
Entwurf einer EC++-Spezi�kationund -Implementierung auf Basis vonISO CDiplomarbeit im Fah Informatik
vorgelegt vonChristoph Dietzegeb. 03.06.1980 in Erlangen
angefertigt amInstitut für InformatikLehrstuhl für Informatik 2ProgrammiersystemeFriedrih-Alexander-Universität Erlangen�Nürnberg(Prof. Dr. M. Philippsen)

Betreuer: Volker Barthelmann, Mihael KlemmBeginn der Arbeit: 02.01.2006Abgabe der Arbeit: 03.07.2006

Ih versihere, dass ih die Arbeit ohne fremde Hilfe und ohne Benutzung andererals der angegebenen Quellen angefertigt habe und dass die Arbeit in gleiher oderähnliher Form noh keiner anderen Prüfungsbehörde vorgelegen hat und von dieserals Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlihoder sinngemäÿ übernommen wurden, sind als solhe gekennzeihnet.
Der Universität Erlangen-Nürnberg, vertreten durh die Informatik 2 (Program-miersysteme), wird für Zweke der Forshung und Lehre ein einfahes, kostenloses,zeitlih und örtlih unbeshränktes Nutzungsreht an den Arbeitsergebnissen der Di-plomarbeit einshlieÿlih etwaiger Shutzrehte und Urheberrehte eingeräumt.
Erlangen, den 03.07.2006
Christoph Dietze

DiplomarbeitThema: Entwurf einer EC++�Spezi�kation und �Implementierung auf Basis vonISO CHintergrund: EC++ (siehe http://www.caravan.net/ec2plus) ist eine ein-geshränkte Variante von C++ für eingebettete Systeme. Da viele C++�Konstrukteverstekt groÿen und/oder ine�zienten Code generieren, wurde eine Untermenge vonC++ spezi�ziert, die derartige Konstrukte verbietet (z.B. Templates, RTTI oder Mehr-fahvererbung).Die EC++�Spezi�kation ist verfasst als Liste von Einshränkungen gegenüber derISO C++�Spezi�kation. Die derzeit verfügbaren Implementierungen von EC++ sindi. d. R. eingeshränkte Versionen von vollen C++�Compilern. Da EC++ jedoh sehrviel der �shwierigen� C++�Fähigkeiten eliminiert, ist anzunehmen, dass EC++ so-wohl bzgl. Spezi�kation als auh Implementierung ähnlih nahe an ISO C liegt wie anISO C++.Aufgabenstellung: Im Rahmen dieser Diplomarbeit soll eine alternative EC++�Spezi�kation erarbeitet werden, die niht aus Änderungen des ISO C++ Standards,sondern aus Erweiterungen und Änderungen von ISO C besteht.Die gänderte C�Spezi�kation ist anshlieÿend in einem ISO�C�Compiler zu im-plementieren und überprüfen. Die erarbeitete Spezi�kation ist zusammen mit demCompiler auf Vollständigkeit zu prüfen. Weiterhin sollen Metriken aufgestellt wer-den, die es erlauben, die bereits existierende EC++�Spezi�kation und die im Rahmender Arbeit erstellte zu vergleihen und zu beurteilen. Für die Implementierung desEC++�Compilers sind ebenfalls Metriken zu entwikeln, die einen Vergleih zwishendem EC++�Compiler und dem ursprünglihen ISO�C�Compiler ermöglihen.Die Ergebnisse der Arbeit sollen sein:
• EC++ Spezi�kation auf Basis von ISO C
• um EC++ Unterstützung erweiterter C Compiler
• Erarbeitung von Metriken zur Beurteilung der Spezi�kation
• Vergleih (mit den entwikelten Metriken) der auf C basierenden Spezi�kationmit der originalen, auf C++ basierenden
• quantitative Analyse des Aufwands der ImplementierungBetreuung: Volker Barthelmann, Mihael Klemm, Mihael PhilippsenBearbeiter: Christoph Dietze

ii

ZusammenfassungEC++ ist eine Programmiersprahe, die speziell für eingebettete Systeme entworfenwurde. Sie ist als eine Untermenge der Sprahe C++ de�niert. Features von C++,welhe für eingebettete Systeme als ungeeignet erahtet werden, wurden bei EC++entfernt. Zum Beispiel werden Templates, Ausnahmebehandlungen und Mehrfahver-erbung in EC++ niht unterstützt. Dadurh, dass ein beahtliher Teil der C++�Funktionalität entfernt wurde, nähert sih EC++ der Sprahe C an. Daher verfolgenwir in dieser Arbeit den Ansatz, EC++ auf Basis von C, an Stelle von C++ zu de-�nieren und betrahten EC++ unter vershiedenen Gesihtspunkten. Erstens gebenwir die De�nition einer alternativen Grammatik im selben Stil, wie die der o�ziellenEC++�Spezi�kation beiliegenden Grammatik an. Als Zweites de�nieren und untersu-hen wir die funktionalen Untershiede und Inkompatibilitäten zwishen C und EC++.Drittens analysieren wir den Umfang einer alternativen, formalen Spezi�kation. Unse-re Absiht, eine solhe Spezi�kation in derselben Weise, wie die o�zielle Spezi�kationzu erstellen, stellte sih als niht durhführbar heraus. Wir erstellen teilweise eine sol-he auf C basierende EC++�Spezi�kation und stellen fest, dass es niht möglih ist,diese in einer sinnvollen Art zu de�nieren. Wir wenden vershiedene Metriken an, umden Umfang der o�ziellen und der alternativen Spezi�kation zu quanti�zieren undkommen zu dem Shluss, dass sowohl die Anwendbarkeit, als auh das Erstellen einerEC++�Spezi�kation basierend auf C niht in einem sinnvollen Rahmen möglih ist.Die meisten vorhandenen EC++�Übersetzer sind reduzierte C++�Übersetzer. Wirhaben einen anderen Ansatz verfolgt, und einen C�Übersetzer zu einem EC++�Über-setzer erweitert. Wir beshreiben, welhe Änderungen und Erweiterungen in den C�Übersetzer eingebraht werden müssen, um die Inkompatibilitäten aufzulösen und dieneue Funktionalität von EC++ einzuführen. Wir verwenden Metriken, um den Auf-wand der Implementierung quantitativ zu bestimmen und betrahten den Arbeits-aufwand als angemessen. Wir wenden auh eine Metrik an, um die Komplexität derImplementierung zu bestimmen. Dies zeigt Funktionen von hoher Komplexität auf,welhe shwieriger zu verstehen, zu testen und zu warten sind. Diese Funktionen sindKandidaten für eine Umstrukturierung.
i

ii

AbstratEC++ is a programming language designed for embedded systems that is spei�ed asa subset of the C++ language. Features of C++ that are onsidered inappropriate forembedded systems are removed from EC++, e. g., templates, exeption handling, andmultiple inheritane are not supported. By the removal of these signi�ant C++ fea-tures, EC++ omes loser to the C language. Hene, we evaluate a di�erent approahon EC++ and de�ne it in multiple respets based on C instead of C++. Firstly, wegive the de�nition of an alternative EC++ grammar in an analogous way to the oneaompanied by the o�ial EC++ spei�ation. Seondly, we de�ne and examinethe funtional di�erenes and inompatibilities between C and EC++. Thirdly, weanalyze the extent of an alternative formal spei�ation. Our intention to reate suha spei�ation in the same manner as the o�ial one emerged as unmanageable. Wepartially reate suh a EC++ spei�ation based on C and observe that it is not pos-sible to de�ne it in a feasible way. We apply di�erent metris to quantify the extent ofboth the o�ial and the alternative EC++ spei�ation and ome to the onlusion,that the extent of suh a spei�ation will be magnitudes larger than the original.Thus, both the reation and the use of a EC++ spei�ation based on C are notsensible.Most existing EC++ ompilers are restrited C++ ompilers. We took a di�erentapproah and implemented a EC++ ompiler by extending a C ompiler. We desribewhat modi�ations and extensions must be injeted into the C ompiler to resolveinompatibilities and to insert the new funtionality of EC++. We use metris toquantify the e�ort of the implementation and evaluate the required work to upgradean existing C ompiler to support EC++ to be moderate. We also use a metri todetermine the omplexity of the implementation. This reveals funtions with highomplexity, whih are harder to understand, test, and maintain. We identify thosefuntions as andidates for future restruturing.

iii

iv

Contents1 Introdution 12 Spei�ation of EC++ 52.1 O�ial Spei�ation of EC++ based on C++ . 52.2 Spei�ation of EC++ based on C . 72.2.1 Funtional Di�erenes between C and EC++ . 72.2.2 Grammar of EC++ based on C . 112.2.3 Formal Spei�ation of EC++ based on C . 112.3 Summary of Di�erenes between C, EC++ and C++.133 Extending a C Compiler to Support EC++ 173.1 Compiler Phases of vb . 173.2 Implementation Details. .193.2.1 Name Mangling. .193.2.2 Method Calls . 203.2.3 Pointer Conversion . 243.3 Features not implemented . 273.3.1 Referenes . 273.3.2 User�de�ned Operators . 274 Metris 294.1 Spei�ation Analysis . 294.1.1 Complexity of the Grammars . 294.1.2 Textual Extent . 314.1.3 Alpha Metris . 324.2 Implementation Analysis . 364.2.1 Extent of the Soure Code . 364.2.2 Program Size . 374.2.3 Cylomati Complexity . 374.2.4 Comparison of the GNU C and C++ Compilers.394.2.5 Conlusion . 40
v

Contents5 Related Work 416 Future Work 437 Conlusion 45A Spei�ation of EC++ based on ISO C99 47B Lexial Grammar 49B.1 Lexial Grammar . 49B.1.1Lexial Elements . 49B.1.2Keywords. .50B.1.3 Identi�ers . 50B.1.4Universal Charater Names . 51B.1.5Constants . 51B.1.6 String Literals . 54B.1.7Puntuators . 54B.1.8Header Names . 55B.1.9Preproessing Numbers . 55B.2 Phrase Struture Grammar. .56B.2.1Expressions . 56B.2.2Delarations . 59B.2.3 Statements . 64B.2.4External De�nitions . 65B.2.5Preproessing Diretives . 66B.2.6Classes . 67B.2.7Derived Classes . 68B.2.8 Speial Member Funtions . 69B.2.9Overloading . 69

vi

List of Figures1.1 Relationship between C, EC++, and C++. 33.1 Compiler phases. 183.2 Delaration and all of a stati method. 213.3 Delaration and all of a non�virtual method. 223.4 Di�erent behavior of virtual and non�virtual methods. 233.5 Virtual table reation and initialization. 233.6 Virtual table reation and initialization in a derived lass. 243.7 Dynami all of a virtual method. 253.8 Stati all of a virtual method. 253.9 Dynami all of a virtual method on an expression with side e�ets. . . 263.10 Pointer onversion. 264.1 Categorization of the rules of the o�ial EC++ grammar. 304.2 Categorization of the rules of the C�based EC++ grammar. 314.3 Portions of the Brownian walks of the C, EC++, and C++ spei�ation. 334.4 Random input; α = 0.496. 344.5 C++ spei�ation; α = 0.660. 344.6 C spei�ation; α = 0.648. 354.7 O�ial EC++ spei�ation; α = 0.609. 35

vii

List of Figures

viii

List of Tables2.1 Summary of di�erenes between C, EC++ and C++. 142.2 Summary of inompatibilities between C, EC++ and C++. 153.1 Name mangling sheme used for vb. 204.1 Alpha values of the C++, C and EC++ spei�ations. 334.2 Lines of ode added to vb. 364.3 Sizes of the vb program with and without EC++ support and usingdi�erent ompiler options. 374.4 Cylomati omplexity [8℄. 384.5 Cylomati numbers (M) of the vb funtions most edited. 384.6 Cylomati numbers (M) of the funtions new for EC++. 394.7 Sizes of the GNU C and C++ ompilers. 404.8 Sizes of the soures of the GNU C and C++ ompilers. 40

ix

List of Tables

x

1. IntrodutionAn embedded system is desribed on Wikipedia as �a speial�purpose system, in whihthe omputer is ompletely enapsulated by the devie it ontrols� [41℄. Embedded sys-tems are used in various di�erent environments and utilized in many modern devies.The most prominent usage areas inlude household devies, vehiles, entertainmenteletronis, and mobile ommuniation devies.The miroproessors employed in these devies make up a big market share. Infat, about 98% of all 32�bit proessors are used in embedded systems and not inPCs [38℄. The market for embedded systems is big and is growing steadily. Theworldwide hip market is to grow by 8% in 2006 and by 10.6% in 2007 [49℄. Embeddedsystems are employed in speial�purpose environments; general�purpose PCs, on theontrary, must be �exible to perform many di�erent tasks. Naturally, requirementsfor embedded systems di�er from those for PCs. Typial requirements for embeddedsystems are reliability, meeting real�time onstraints, and low prie beause of mass�prodution [41℄.To meet these requirements, also the demands on the programming language usedto program suh systems di�er from those for PC appliations. Major demands aree�ient memory usage and small program size. Sine savings in these two areasoften lead to lower osts, it is important for a programming language not to imposeunneessary or unwanted overhead (so�alled ode bloat).What is the best �tting programming language, depends on the appliation of theembedded system. In many ases, low�level assembly languages are used to programembedded systems. Suh languages give diret ontrol over the resulting mahineode and thus enable the programmer to write highly e�ient software. When theprogramming task is small and of little omplexity, there often is no need for a high�level language. The use of a high�level language with more abstration apabilitiesan yield many advantages, whih inlude better portability, reusability, and of ourseeasier management of omplex systems [5℄. Programming in high�level languages alsois less error�prone than assembly programming.Probably the most ommonly used high�level programming language for embed-ded systems is C. This is due to C being well understood, having little potential toreate overhead, and good C ompilers being widely available. C++, whih o�erseven more abstration mehanisms�by objet�oriented, generi programming, andmetaprogramming [43℄�is also often used for embedded systems programming. How-ever, some of C++'s language features are less appropriate for embedded systems. Forexample, when using template features without are, the program size an inrease1

1. Introdutionimmensely. Another example: when exeption handling is used, asserting real�timeonstraints an beome di�ult [28℄.The EC++ (Embedded C++) language [13℄ is espeially designed to meet the re-quirements of embedded systems. It is derived from C++ and removes features fromC++ that are less suited for embedded systems programming. Thus, EC++ formsa proper subset of C++. The basi idea when designing EC++ was to reate a lan-guage that o�ers the objet�oriented programming paradigm of C++, and to removethe features inappropriate for embedded systems. The most prominent features thatwere removed from C++ are templates, exeption handling, and multiple inheritane.In addition to the language, there is also a library spei�ed for EC++. This thesisfouses solely on the language, not the library.Historially, Dennis Rithie began work on the language alled �C� in 1969, manyfeatures of whih were derived from a language named �B� by Ken Thompson. By1978 Rithie and Brian Kernighan published the �rst edition of �The C ProgrammingLanguage� [22℄, whih served as the �rst informal spei�ation of C�this version ofC is ommonly referred to as �Kernighan and Rithie C� or as �K&R C�. In 1979,Bjarne Stroustrup began work on a language extending C, whih was alled �C withlasses� at the time, 1983 its name was hanged into �C++�. In 1989, the AmerianNational Standards Institute (ANSI) ompleted a standard of C, whih with minormodi�ations was also adopted by the International Organization for Standardization(ISO) as ISO/IEC 9899:1989 [18℄, ommonly referred to as �C89� and �C90�. Over theyears, many new features found their way into C++ and in 1998 a joint ANSI�ISOommittee rati�ed a standardized C++ as ISO/IEC 14882:1998 [20℄. Throughoutthis thesis, when we refer to C++, we refer to this standard. A new revision of theC standard was released in 1999 as ISO/IEC 9899:1999 [21℄ and was adopted as anANSI standard in 2000. When we use the name C, we atually mean C as spei�edin the C99 standard.Sine 1979, C and C++ have evolved independently. Changes and new featureswere introdued in both languages. C adopted some features from C++ and vieversa. Also, inompatibilities between the two languages ame up. Figure 1.1 viewsthe three languages as sets and depits ommon funtionality, where the sets overlap.The gradient between C and EC++ symbolizes the inompatibilities between C andEC++, whih are also inompatibilities between C and C++.In this thesis, we investigate the issues of an alternative EC++ spei�ation basedon C rather than C++. We show, what parts of C have to be removed, whih inom-patibilities have to be resolved, and whih features of C++ have to be added. Ourinitial intention was also to reate a formal alternative spei�ation based on C usingthe same style as the o�ial spei�ation does. However, this spei�ation has shownto be too omplex to be reated in a sensible way. Most available EC++ ompilersare stripped�down C++ ompilers. In this thesis, we also examine the steps requiredto upgrade a C ompiler to ompile EC++. We also implemented this funtionalityinto an existing C ompiler. Then, we ompare the o�ial with the alternative spe-2

Figure 1.1.: Relationship between C, EC++, and C++.i�ation using metris to quantify the extent and omplexity. We also use metris todetermine the omplexity of the implementation if EC++ based on a C ompiler.In Chapter 2 we �rst present the spei�ation of EC++ as it is o�ially de�ned,based on C++. Afterwards we give an alternative spei�ation, based on C. In Chap-ter 3 we extend an existing C ompiler to also support EC++, and desribe therequired steps to do so. In Chapter 4 we quantify and ompare the extent of thetwo alternative spei�ations and also the e�ort required to extend the C ompiler tosupport EC++. In Chapter 5 we have a look at related work. Chapter 6 lists sometopis for future work and in Chapter 7 we give a onlusion of the thesis.

3

1. Introdution

4

2. Spei�ation of EC++In Setion 2.1 of this hapter we will present the o�ial EC++ spei�ation whih isbased on C++. In Setion 2.2 we will look into what is neessary to speify EC++ notbased on C++, but on C. Many adjustments of the spei�ation are required and wewill examine some in greater detail. Then we investigate the extent and omplexityof de�ning a formal spei�ation of EC++ based on C. Conluding we will give asummary of the di�erenes between C and EC++ in Setion 2.3.2.1. O�ial Spei�ation of EC++ based on C++The o�ial Embedded C++ spei�ation [13℄ is de�ned by the Embedded C++ Teh-nial Committee. The ommittee basially is a ollaboration of Asian ompanies. Itsmost important members are Fujitsu, Motorola, NEC and Toshiba. The most reentversion is WP-AM-003, whih was released in Otober 1999.The objetive of EC++ as stated by the ommittee is to �provide embedded sys-tems programmers with a subset of C++ that is easy for the average C programmerto understand and use�, to �retain the major advantages of C++�, and to �ful�ll thepartiular requirements of embedded systems designs�, as well as to �make the spei-�ation as small as possible while retaining the objet�oriented features� [11℄.The EC++ spei�ation is de�ned as a list of di�erenes to the C++ spei�a-tion [20℄, rather than a doument to be read for itself. Almost all of the di�erenesare brief instrutions to omit a hapter, paragraph, subparagraph, or footnote fromthe C++ spei�ation. It de�nes the EC++ language as well as the EC++ library.However, in this thesis we will only be onerned with the language spei�ation.With embedded systems and their small memory apabilities being the target plat-form, features that unavoidably or potentially introdue overheads are andidates tobe omitted from EC++. As well, features that are di�ult to use sensibly for a pro-grammer having only experiene in C, are andidates for removal. The following listgives brief desriptions of the features omitted from C++ as desribed in the EC++Rationale [11℄:
• Mutable spei�ers are used to delare a lass member mutable , whih allowsthat member to hange its value, even when the lass objet is delared as

const . Espeially for embedded systems, it is important to be able to deidewhether an objet is really onstant and thus an safely be put into ROM. Sine5

2. Spei�ation of EC++the mutable spei�er might onfuse an embedded systems programmer, it isexluded from the EC++ spei�ation.
• Exeption handling enables more elaborate handling of errors by the oneptof throwing and athing exeptions. When an exeption is thrown, the stakis unwound until an appropriate exeption handler is found that athes theexeption. In C, errors are usually signaled by the return value of funtions.However, besides having more ontrol when dealing with errors, there are alsosome drawbaks, espeially for embedded systems programming. It is di�ult todetermine the runtime and memory onsumption when using exeption handling.Also the program size inreases when exeption handling is used. Therefore,exeption handling is exluded from in the EC++ spei�ation.
• Runtime type information (RTTI) allows to determine the exat type of an in-stane at runtime by using the typeid keyword. Casting using dynamic_castalso makes use of RTTI. Using these failities is useful in programs that makeheavy use of polymorphism. However, RTTI unavoidably introdues some over-head. The overhead and embedded systems programs typially making little useof RTTI (beause they are usually small) are the reasons, why RTTI is exludedfrom the EC++ spei�ation.
• Namespaes reate ontexts for identi�ers and thus allow using the same iden-ti�er in di�erent namespaes. This is espeially useful in large�sale programsto struture the ode and to avoid name lashes. Due to the target proes-sors of EC++ having little memory, programs are usually not very large andname on�its rarely our. Hene, namespaes are exluded from the EC++spei�ation.
• Templates enable generi programming. They are a very powerful language tool,espeially when used along with inheritane and operator overloading. Templatesdo not neessarily introdue overhead. However, when used arelessly, programsize an inrease dramatially. Using templates e�iently requires a high levelof experiene. Learning to use templates well will require a large of amount oftime for the average C programmer. For these reasons, templates are exludedfrom the EC++ spei�ation.
• Multiple inheritane and virtual inheritane appropriately an lead to expres-sive and elegant lass hierarhies. However, designing suh hierarhies is di�ulteven for expert programmers in that �eld. Programs that use only single inher-itane tend to be more understandable, readable, and maintainable. Virtualinheritane only makes sense in assoiation with multiple inheritane. There-fore, multiple inheritane and virtual inheritane are exluded from the EC++spei�ation.6

2.2. Spei�ation of EC++ based on C2.2. Spei�ation of EC++ based on COne objetive of this thesis is to propose a spei�ation of EC++ based on C. SineEC++ removes large portions from C++, it shifts further towards the C languagespei�ation. At �rst glane, it seems possible to de�ne an alternative spei�ation forEC++ based on C rather than C++. However, reating suh a di�erential spei�ationon the same level� i. e., a list of all textual hanges needed for the spei�ation�asthe original spei�ation has shown to beome unmanageable.In Setion 2.2.1 we present the di�erenes between C and EC++ from a funtionalpoint of view. In Chapter 2.2.2 we introdue an alternative grammar for EC++ basedon the C grammar and in Setion 2.2.3 we investigate the omplexity of a formalspei�ation of EC++ based on C.2.2.1. Funtional Di�erenes between C and EC++In this setion, we will examine the di�erent funtionalities and the inompatibilitiesbetween C and EC++. With additional funtionality we denote that one languageallows ertain onstruts, whih result in an error in the other language. Inompati-bilities are onstruts that are legal in both languages, but result in di�erent behavior.In this sense, EC++ and C++ are ompatible and the inompatibilities between Cand C++ are the same as between EC++ and C++. The additional funtionalityof C is also the same when ompared to either C++ or EC++. Stroustrup desribessome inompatibilities between C and C++, mainly meant as an aid for programmersto write more portable ode [29℄. A more omprehensive list is given by Tribble, whopresents a list of 48 di�erenes between C and C++ [37℄. The di�erenes shown inboth soures do not over the new features of C++ ompared to C. The di�erenes be-tween C and EC++ an be organized into three ategories. Exemplarily, we presentsome issues from eah ategory. For a summary of all di�erenes, see Setion 2.3.These are the three ategories:
• Funtionality of EC++ not present in C (Setion 2.2.1.1)
• Funtionality of C not present in EC++ (Setion 2.2.1.2)
• Inompatibilities between C and EC++ (Setion 2.2.1.3)2.2.1.1. Funtionality of EC++ not present in CWe will give a brief overview of some of the additional features of EC++ when om-pared to C. An extensive disussion of these features is beyond the sope of this thesis,see [29℄ for more detailed desriptions. 7

2. Spei�ation of EC++Classes together with their assoiatedfeatures form the foundation of objet�oriented programming in EC++. Ad-ditionally to data members, lasses (orstrutures) an ontain methods, inheritfrom other lasses, ontrol omponentaess and have friends. In C, strutureslak that additional funtionality.User�de�ned operators allow furtherustomization of lasses in EC++. Op-erators have a behavior de�ned by thelanguage for its built�in types. User�de�ned operators allow to de�ne thesemantis of operators for user�de�nedtypes. In C, operators are only allowedto be used on the built�in types.Overloading allows the de�nition ofmultiple funtions with the same namebut di�erent parameters. When an over-loaded funtion is alled, disambiguationrules are used to determine whih in-stane of the funtion to all. The se-letion is done at ompile time. C doesnot allow multiple de�nitions using thesame name.Empty strutures are struture dela-rations with an empty body and are notallowed in C. In EC++ however, suhstrutures an legally be delared.

8

2.2. Spei�ation of EC++ based on C2.2.1.2. Funtionality of C not present in EC++In this setion, we will present some of the additional features of C when omparedto EC++. These are features, whih C supports and that will result in errors whenused in EC++.Variable�length arrays (VLAs) wereintrodued in C99. VLAs are arrays ofvariable size that are alloated on thestak, so the expression de�ning the sizedoes not have to be a ompile�time on-stant. VLAs an also be used as fun-tion parameters, allowing a variable ex-pression as array size or [*] for un-spei�ed array size. Due to VLAs, theway a sizeof expression is evaluatedhanges, sine it does not always resultin a onstant value. EC++ does notsupport VLAs: array sizes are requiredto be spei�ed by onstant expressions.Designated initializers are also a newfeature of C99. They allow initializationof spei� omponents in strutures andunions using the omponents' name. Ini-tialization of arrays an be spei�ed us-ing the subsript. EC++ does not sup-port designated initializers. Thus, stru-ture initializers must follow the order, inwhih its omponents are delared andarray initializers begin at the �rst ele-ment.Compound literals were also intro-dued in C99. Additionally to the spe-i�ation of literals of primitive types,ompound literals allow the spei�ationof strutures and array types in onstantexpressions. This is not supported inEC++. However, omparable funtion-ality an be ahieved using onstrutorsin EC++. 9

2. Spei�ation of EC++2.2.1.3. Inompatibilities between C and EC++In this setion, we will show some of the inompatibilities between C and EC++.These are issues, where onstruts are allowed in both C and EC++, but result indi�erent behavior.Funtion name mangling is the proess that generates a unique symboliname for a funtion or variable. In C, identi�ers are used diretly as symbolinames. However, in EC++ this is insu�ient beause member funtions of dif-ferent lasses an have the same name and beause of funtion and operatoroverloading. Therefore, C and EC++ will in general produe di�erent symbolinames. How the mangling is to be done is not de�ned in the EC++ spei�a-tion but is left to the ompiler implementation. To be able to all a funtionompiled by a C ompiler from EC++, that funtion must be delared with anappropriate linkage spei�ation using extern “C” . This tells the ompiler,not to mangle the name of that funtion, but to use the C naming onventions.Linkage spei�ation is an additional feature of EC++, whih is not allowed inC.Charater literals have di�erent typesin C and EC++. In C ’a’ is of type
int , whereas it is of type char inEC++. This an lead to inompatibleode when using sizeof expressions.In the improbable ase, that an imple-mentation uses the same sizes for charand int , these problems do not showup.Empty parameter lists have di�erentmeanings in C and EC++. A fun-tion delaration with no parameters inEC++ delares a funtion that expetsno arguments. In C, it delares a fun-tion with unspei�ed parameters. A de-laration with void as the only parame-ter delares a funtion with no parame-ters in both languages.

10

2.2. Spei�ation of EC++ based on CNested struture tags show di�erentbehavior in C and EC++. In C, a stru-ture, union, or enumeration delaredwithin a struture delaration has globalsope. In EC++, these have lass sope.Therefore, in C, those delarations arevisible at global sope, but are not visi-ble in EC++.2.2.2. Grammar of EC++ based on CEah of the three languages (C, EC++, and C++) provides, along with their spe-i�ations, a grammar that aepts the assoiated language. These are ontext�freegrammars and are given in Bakus�Naur form [3℄. The grammars atually aept su-persets of the assoiated languages. This means, that all legal programs are aepted,but also programs that are inorret (i. e., ones that violate semanti rules) may beaepted. Aepted programs are said to be syntatially orret.The Embedded C++ Tehnial Committee presents a grammar for the EC++ lan-guage [12℄. This grammar is de�ned di�erential to the C++ grammar as given in theC++ spei�ation. No new rules are introdued, only existing rules are ompletely orpartially removed.We reated a grammar in an analogous way, whih is based on the C grammar.This requires not only deletion, but also alteration and insertion of rules and symbols.We paid attention to keep the di�erenes small. As muh as possible, we inserted therules for the additional EC++ features from the o�ial EC++ spei�ation withouthange. In some ases, replaing some rules ompletely with the ones from the o�ialEC++ grammar was sensible. For example, the rules that desribe struture dela-rations were removed and replaed with the rules of the o�ial EC++ grammar thatover lasses, inheritane, members, aess ontrol, et. This approah�omparedto adjusting and extending the existing rules for strutures�led to a muh learergrammar. Appendix B shows the resulting grammar. Note that this grammar and theone de�ned by the EC++ ommittee do not aept exatly the same languages, butboth aept supersets of the EC++ language. Syntatially orret programs that donot respet the EC++ semantis are rejeted by the semanti analysis.2.2.3. Formal Spei�ation of EC++ based on COne intention of this thesis is to produe an alternative formal spei�ation of EC++,based on C instead of C++. The way it is written should follow the one used in theo�ial spei�ation: a omplete list of all textual di�erenes, that need to be appliedon the underlying spei�ation. 11

2. Spei�ation of EC++However, the task of reating suh a spei�ation has shown to be hardly manage-able. The way in whih the o�ial spei�ation is written, is unsuitable for the newone. In the o�ial EC++ spei�ation, all di�erenes are short statements, almostalways to omit a ertain phrase, paragraph or hapter. However, when the basis is C,many alterations and insertions are required.To get a better piture of the extent of the alternative spei�ation, we took onesetion from the C spei�ation (setion �6.5.2.2 Funtion alls�), for whih there is alosely orresponding setion in the C++/EC++ spei�ation (setion �5.2.2 Funtionall�). For that setion, we wrote a list of di�erenes in the same way as the o�ialEC++ spei�ation is written (see Appendix A).The result of our e�ort is a di�erential spei�ation that is just as long as the souresetion and that quotes large portions from the EC++ spei�ation. Note that theadditional information quoted from the EC++ spei�ation is not from a hapterrespetive to the new features of EC++. An issue that we did not address is �ttingthe referenes of the quoted EC++ text, sine we have no orresponding informationin the example. This setion is just about 2 pages long, so this should only be used toget an impression. There are setions for whih less adjustment will be neessary, butthere are also setions that will be muh harder to adjust. For example, setions thatdo not even have suh a lear orrespondene in the EC++ spei�ation will makeadjustment more ompliated.In fat, about one third of all paragraphs in the C spei�ation are not orret forEC++ and must be adjusted, replaed, or removed. The remaining paragraphs alsoneed editing beause of either inompatibilities or the additional EC++ funtional-ity. The new EC++ features are de�ned in the C++ spei�ation. Issues onerningthose new features are not only found in their respetive hapters, but are also spreadthroughout the whole doument. Taking this information and extending the C spe-i�ation with it, is not sensibly manageable. Only very little of the C spei�ationould remain as is. Essentially, it is omparable to replaing the C spei�ation withthe C++ spei�ation or to writing an entirely new spei�ation.We estimate the extent of the alternative EC++ spei�ation based on C to beomparable to that of the whole C spei�ation (150�200 pages). In omparison, theo�ial spei�ation �ts on 18 pages. So the alternative spei�ation would also beinferior to the original onerning readability and understandability. For spei�ationsin general, ompleteness, and orretness are essential, whih are at least di�ult toassert.

12

2.3. Summary of Di�erenes between C, EC++ and C++2.3. Summary of Di�erenes between C, EC++ andC++In this setion, we present two tables, whih summarize the di�erenes between C,EC++, and C++. Table 2.1 shows the di�erenes in supported features betweenthe three languages. Some of these are desribed in Setions 2.1 and 2.2.1. Table 2.2summarizes the inompatibilities between C and EC++ and between EC++ and C++.With C++ being a proper superset of EC++, there are no inompatibilities betweenthese languages. Some of these issues were desribed in Setion 2.2.1.3. Also see [29,37℄ for more extensive desriptions of the features and inompatibilities mentioned.

13

2. Spei�ation of EC++
Feature C EC++ C++Exeption handling ✗ ✗ ✓Multiple inheritane ✗ ✗ ✓Namespaes ✗ ✗ ✓Runtime type information (RTTI) ✗ ✗ ✓Templates ✗ ✗ ✓Virtual inheritane ✗ ✗ ✓Aggregate initializers ✗ ✓ ✓Alternate puntuation spellings ✗ ✓ ✓Anonymous unions ✗ ✓ ✓Boolean type ✗ ✓ ✓Classes ✗ ✓ ✓Conditional expression delarations ✗ ✓ ✓Default arguments ✗ ✓ ✓Empty strutures ✗ ✓ ✓Funtion and operator overloading ✗ ✓ ✓Funtions returning void ✗ ✓ ✓

new and delete ✗ ✓ ✓Referenes ✗ ✓ ✓User�de�ned operators ✗ ✓ ✓Compound literals ✓ ✗ ✗Designated initializers ✓ ✗ ✗Dynami sizeof evaluation ✓ ✗ ✗Enumeration onstants ✓ ✗ ✗Flexible array members ✓ ✗ ✗Hexadeimal �oating�point literals ✓ ✗ ✗IEC 60559 arithmeti support ✓ ✗ ✗

long long integer type ✓ ✗ ✗Non�prototype funtion delarations ✓ ✗ ✗

pragma keyword ✓ ✗ ✗Prede�ned identi�ers (__func__) ✓ ✗ ✗

restrict keyword ✓ ✗ ✗Variable�argument preproessor funtion maros ✓ ✗ ✗Variable�length arrays ✓ ✗ ✗Table 2.1.: Summary of di�erenes between C, EC++ and C++.
14

2.3. Summary of Di�erenes between C, EC++ and C++

Feature C ↔ EC++ EC++ ↔ C++Charater literals E ✓Comma operator results E ✓

const linkage E ✓Dupliate type de�nitions E ✓Empty parameter lists E ✓Empty preproessor funtion maro arguments E ✓Enumeration delarations with trailing omma E ✓Enumeration types E ✓Funtion name mangling E ✓Funtion pointers E ✓Inline funtions E ✓Keywords E ✓Nested struture tags E ✓One de�nition rule E ✓

static linkage E ✓String initializers E ✓String literals are const E ✓Strutures delared in funtion prototypes E ✓Type de�nitions versus type tags E ✓Variable�argument funtion delarators E ✓

void pointer assignments E ✓Table 2.2.: Summary of inompatibilities between C, EC++ and C++.

15

2. Spei�ation of EC++

16

3. Extending a C Compiler toSupport EC++In this hapter we will disuss what is neessary to upgrade an existing C ompilerto ompile EC++ ode in addition to C ode. The C ompiler we hose for this taskis vb [4℄. It is a highly optimizing, portable, and retargetable ISO C ompiler. Itsupports ISO C aording to C89 and a subset of the new features of C99. However, wepretend that we are upgrading a fully C99 ompliant ompiler. Atually, vb inludesall features from C99 that are also allowed in EC++. Only new features of C99 thatare not allowed in EC++ need to additionally be removed from a full C99 ompliantompiler; for vb no hange is needed, sine those features are not supported in the�rst plae. We fous solely on issues onerning the EC++ language, not the EC++library.3.1. Compiler Phases of vbThe proessing that a soure �le undergoes in the ompiler until the assembler odeis produed an be partitioned into di�erent ompiler phases (see Figure 3.1). Suhan organization is used by most ompilers for any language and is doumented inmany books and papers about ompiler onstrution, e. g., [2, 48, 6℄. In the atualimplementation the phases are not as leanly separated as depited in the �gure, e.g.,in the ase of vb the preproessing and lexial analysis phase are performed in thesame step. The front end and bak end however, an learly be distinguished. Thefront end eventually generates intermediate ode, whih is optimized and then fed tothe bak end. The vb bak ends are exhangeable and they are available for di�erentplatforms.The preproessor and lexer module reads from the soure �le and splits it into astream of tokens. A token is an atomi unit of the language, e.g., keyword, identi�er,onstant, operator, parenthesis, et. The input is sanned just in time, whih meansthat only when the parser requires the next token, the lexial analysis of the soure �leprogresses and returns the next token to the parser. The vb ompiler uses a reursivedesent parser [1℄ to reognize the struture of the stream. Thus, the parser essentiallyis a set of funtions whih losely re�et the rules in the grammar. The parser triggerssemanti analysis and intermediate ode generation when appropriate. For example,when the input is an expression, the parser reates an Abstrat Syntax Tree (AST)17

3. Extending a C Compiler to Support EC++

Figure 3.1.: Compiler phases.for that expression and afterwards triggers semanti analysis to attribute the AST ofthe urrent expression. Then, intermediate ode generation for the attributed AST isalled and thereafter parsing ontinues with the next statement of the input.What follows is an overview of the modi�ations that have to be applied in eahspei� phase.
• Preproessing phaseMinor modi�ations have to be applied onerning the preproessor, mostly toremove additional funtionality from C. For example, C supports funtion maroswith a variable number of arguments, EC++ does not allow this.
• Lexial analysis phaseAside from some minor modi�ations of removing some C funtionality (e.g.,universal harater names), the set of aepted keywords also has to be adjusted.Note that the keywords that are used for C++ funtionality that is not part ofEC++ are still reserved. New tokens also are: �-> * �, �. * �, and �:: �.
• Syntati analysis phaseThe parser has to be modi�ed to aept all of the EC++ onstruts. Thisinludes method and user�de�ned operator delarations and de�nitions, baselass spei�ers, nested name spei�ers, et.18

3.2. Implementation Details
• Semanti analysis phaseBesides additionally having to proess EC++ onstruts, semanti analysis hasto be modi�ed to address numerous other EC++ spei� issues, e. g., methodalls, pointers to methods, asting of pointers, alls of user�de�ned operatorsand referenes. Some of these ases are disussed in depth in Setion 3.2.
• Intermediate ode and subsequent phasesNo additional funtionality is required for the intermediate ode, hene no mod-i�ations on the intermediate ode generation phase and subsequent phases areneessary. All of the optimizations that may be applied for C may also be ap-plied to EC++. However, there are additional optimizations that are appliablefor EC++. Some optimizations that are planned for future versions of vb aredesribed in Chapter 6.3.2. Implementation DetailsIn this setion we will disuss some of the implementation issues of EC++ in depth.It is not a omplete list of all hanges required to upgrade a C to an EC++ ompiler.The basi onept, we use is to redue the new EC++ onstruts to equivalent Construts. This is essentially the same approah that Cfront [39℄ uses. Cfront wasthe original ompiler for C++, whih onverted C++ to C. In ontrast to Cfront, wedo not generate C ode, but perform the transformations from EC++ to C onstrutsin vb's internal data strutures. Note that not all EC++ features have been imple-mented and thus are not disussed in this setion. See Setion 3.3 for a disussion ofthe missing features.3.2.1. Name ManglingIn EC++, di�erent funtions and methods are allowed to have the same identi�erif they are delared in di�erent sopes or if their parameters di�er as required foroverloading. So, a unique, symboli name has to be reated, that is used to refer tothe spei� funtion instane. Symboli names must also be reated for user�de�nedoperator funtions. This is not required for variables, sine di�erent variables (ofdi�erent type) are not allowed to use the same identi�er. The proess of reatingthe symboli name is alled name mangling. In C, this is not an issue, sine neithermethods nor funtions that have the same identi�ers are allowed. How to reatethe mangled names is not de�ned in the EC++ spei�ation but is implementationdependent.For vb we hose the mangling sheme de�ned by Intel in the Itanium�64 ABI [9℄.The GNU Compiler Colletion [14℄ also uses this method in version 3.x and 4.x. Inthis sheme, mangled variable names are the same as their plain name. Mangled19

3. Extending a C Compiler to Support EC++EC++ Code Mangled Name
int x; x
void f(); _Z1fv
int g(int,float,double); _Z1gifd
void hh(int ***); _Z2hhPPPi
struct A {

int f(double); _ZN1A1fEd
static int abc(float); _ZN1A3abcEf

};
void abc(A); _Z3abcN1AE
typedef int (func)(double);
void f(func); _Z1fPFidETable 3.1.: Name mangling sheme used for vb.names of funtions and methods have a pre�x of _Z followed by their enoded sope,identi�er, and parameters. Names of sopes and identi�ers are mangled as their plainnames pre�xed with their length. Soped names additionally have a N prependedand an E appended, e. g., 1f , 3abc , N5these3are7encoded6scopes3varE , et.Parameters are enoded aording to their type, e. g., int is enoded as i , pointerto double as Pd. For a full spei�ation, see [9℄. Note that neither spei�ers suhas static or virtual , nor the impliit this pointer are enoded in the mangledname. Table 3.1 shows some examples of this method. The EC++ spei�ation forbidsuser�delared variables to have a _Z pre�x, thus name lashes are avoided.For better readability, we will use a simpler sheme in the examples shown below.For example, the method f of lass A reeives the mangled name A_f .3.2.2. Method CallsA funtion delared inside a lass or strut delaration is alled a method. In C,funtion delarations inside strutures are not allowed. The behavior of methods isde�ned in the EC++ spei�ation, but how to realize it is left to ompiler implemen-tation. In the implementation for vb we used what is probably the method usedmost ommonly by ompilers. This method is desribed in many books about ompileronstrution for objet�oriented languages, e. g., [2, 48℄.All methods are ompiled as global funtions. When a method is alled, the syn-tati analysis transforms that all expression into the appropriate AST nodes in thesame way as an ordinary funtion all would be transformed. That the expression isa method all is deteted during the semanti analysis of the method identi�er node.Then the spei� method to be alled is determined following the soping and over-loading rules. Afterwards, it must be heked if the aess rules allow alling that20

3.2. Implementation Details

Figure 3.2.: Delaration and all of a stati method.method from the urrent ontext. All method alls an be transformed into C ompli-ant funtion alls. This priniple is used to transform the AST representing a methodall into an equivalent AST ontaining only C ompliant onstruts. Two di�erentkinds of alls an be distinguished. If the funtion to be alled an be determined atompile�time, it is a stati all. If the atual funtion to all must be determined atruntime, it is alled a dynami all. Dynami alls are used for virtual funtions.The names of these funtion are mangled as spei�ed in [9℄, but in the �gures wewill use the simpler sheme, as said in Setion 3.2.1. The following �gures ontainingexamples will show the original EC++ soure ode as written by the programmer,the equivalent C ode, the AST as it is before the transformation and the AST aftertransformation.3.2.2.1. Stati method allsThe delaration of the stati method is internally transformed into a delaration of aglobal funtion using the mangled name and having the same parameters and returntype. A all to a stati method is transformed into a stati all of the aordingfuntion, the arguments to the funtion/method remain unhanged. Thus, statimethods may be mapped to global funtions in a straightforward way. See Figure 3.2.3.2.2.2. Non�virtual method allsWhen a non�virtual, non�stati method is de�ned, internally, a global funtion withthe mangled name is de�ned. In addition, that funtion reeives the impliit thispointer as its �rst parameter. The user�de�ned parameters are appended after it.The this pointer parameter is of type pointer to lass, to whih the method belongs.21

3. Extending a C Compiler to Support EC++

Figure 3.3.: Delaration and all of a non�virtual method.When a non�virtual method is about to be alled, the AST for the all is transformedto a stati all to the aording global funtion and the impliit this pointer argumentis passed to the funtion as the �rst argument (see Figure 3.3). The this pointerargument an either be expliitly given (e.g., a.f() or ap->f()) or, if the ontextis a non�stati method, the this pointer of that surrounding method is used.3.2.2.3. Virtual method allsFirstly, let us give a brief example of when and how a virtual method all behavesdi�erently from its non�virtual ounterpart (see Figure 3.4). Suppose a lass B delaresa method and a derived lass D delares a method with the same name and the sameparameters (this method overrides the base lass' method). In EC++, it is allowedto ast a pointer to a derived lass to a pointer to the base lass. Further supposea method is invoked for a pointer to the base lass B, but whih atually points toan instane of the derived lass D. If the method was not delared as virtual (f), thepointer type would determine whih funtion to atually all. So, this would be astati all of the base lass' method (B::f). On the other hand, if the method wasdelared as virtual (g), the method of the onrete objet's type would be alled, whihis the derived lass' method (D::g). This is a dynami all, sine the type of objetpointed to must be evaluated at runtime. Virtual methods are always non�stati andalso arry an impliit this pointer.How to ahieve this behavior is not de�ned in the spei�ation but is left for theompiler implementation. We use the most ommon approah: using virtual tables.22

3.2. Implementation Details

Figure 3.4.: Di�erent behavior of virtual and non�virtual methods.

Figure 3.5.: Virtual table reation and initialization.Desriptions of this method an be found in many ompiler books for objet�orientedlanguages, e. g. [2, 48℄. For eah lass that has virtual methods (either delared initself or inherited from a base lass), a virtual table is generated. A virtual table is aonstant struture that ontains the addresses of all virtual methods for the assoiatedlass. It su�es to reate just one instane of a virtual table per lass and to have apointer in eah lass instane point to this table. For an example see Figure 3.5. Aderived lass inherits all virtual methods of the base lass, virtual methods that areadded to the derived lass are appended to the table. This way, a method has thesame o�set in the virtual table of a derived lass as it has in the base lass. Whena derived lass overrides a virtual method, the appropriate entry in the virtual tableis replaed with the address of the overriding method. The virtual table pointer isnot inherited by derived lasses, but replaed with pointers to the virtual table of thederived lass. For an example, see Figure 3.6. 23

3. Extending a C Compiler to Support EC++

Figure 3.6.: Virtual table reation and initialization in a derived lass.When a virtual method is invoked, the virtual table pointer of the assoiated instaneis dereferened. Then the appropriate method address is looked up in that virtualtable, and the funtion at that address is alled (see Figure 3.7).Performing a dynami funtion all ompared to a stati funtion all is ostly.It requires two additional pointer dereferenings and makes inlining of that funtiondi�ult. Also, modern proessors an bene�t from pre�fething instrutions whenjumping to a onstant address. Thus, replaing dynami alls with stati alls wher-ever possible an improve runtime performane signi�antly. This is possible, when amethod is always alled for the same lass type. The most ommon ase is, when themethod is alled for a onrete instane�rather than for a pointer to instane�, foran example, see �gure 3.8.Care must be taken when a virtual method is alled for an expression that may haveside e�ets. For example, suh side e�ets may our, when a funtion that returnsa pointer to a lass type is alled in the expression (see Figure 3.9). Transformingsuh a onstrut the same way as shown in Figure 3.7 would invoke the side e�ets of
h twie�one when the virtual table pointer is looked up and one when the thispointer is passed. Therefore, a temporary variable must be reated and the value ofthe expression must be assigned to it. Then that temporary is used for both the lookupand the this pointer. This way, the expression and its side e�ets are evaluated onlyone.3.2.3. Pointer ConversionWhen asting a pointer to a derived lass to a pointer to the base lass another issuemust be addressed. Assume, a base lass B has no virtual methods, and a lass derivedfrom it (D) has virtual methods (see Figure 3.10). Thus, Dmust reeive a virtual tablepointer as its �rst omponent, whereas B must not have suh a pointer. When a ast24

3.2. Implementation Details

Figure 3.7.: Dynami all of a virtual method.

Figure 3.8.: Stati all of a virtual method.
25

3. Extending a C Compiler to Support EC++

Figure 3.9.: Dynami all of a virtual method on an expression with side e�ets.

Figure 3.10.: Pointer onversion.
26

3.3. Features not implementedis performed, the resulting pointer must not point to the virtual table pointer, like itdid before, but to the following omponent. Therefore, suh a ast involves inreasingthe address pointed to. Analogously, when asting a pointer to base lass withoutvirtual table down to a pointer to derived lass with virtual table, the address mustbe dereased.The speial ase of asting a null pointer must obey the following rule: a null pointervalue is always onverted to a null pointer value of the destination type. In that ase,the address must not be inremented or deremented.3.3. Features not implementedWe were not able to implement all features of EC++ into vb. This was due to thelimited time available and the implemented features being more involved than initiallyexpeted. We implemented the features in order of importane to enable objet�oriented programming. The implemented features are lasses with stati, virtual andusual methods, onstrutors, destrutors, single�inheritane, aess ontrol, friendsand overloading. Features that are still missing are referenes, user�de�ned operators,and some inompatibility issues. We estimate the ompleteness to be about 70%.In Setions 3.3.1 and 3.3.2 we present how we intend to implement referenes anduser�de�ned operators, respetively.3.3.1. ReferenesWikipedia de�nes a referene in the C++ language�whose behavior is not hangedfor EC++�as �a simple referene datatype that is less powerful but safer than thepointer type inherited from C� [46℄. The funtionality of referene types an be reduedto C equivalent funtionality using pointer types. Hene, the intermediate languageof vb does not need to be hanged to handle referenes. However, additional typeheking is required by the semanti analysis. For example, the semantis of referenesin assignments, as funtion arguments, as return types, et. must be veri�ed.3.3.2. User�de�ned OperatorsAs stated in Setion 2.2.1.1, EC++ allows to de�ne the semantis of operators foruser�de�ned types. How user�de�ned operators are ompiled is similar to ompilingmethods. When a user�de�ned operator is de�ned, internally a global funtion isde�ned. The name of that funtion is mangled as spei�ed in [9℄.Operators an either be alled expliitly (e. g., a.operator=(b);) or impliitly(e. g., a=b;). The expliit alls are handled analogous to method alls. Impliitoperator alls must be deteted during semanti analysis. Analogously to methodalls, overloading and aess rules must be veri�ed. 27

3. Extending a C Compiler to Support EC++

28

4. MetrisIn this hapter, we will disuss di�erent metris to quantify the size and omplexityof the spei�ations and the implementation of our EC++ ompiler. Our goal forthe spei�ations is to ompare the two alternative EC++ spei�ations and to de-termine, how sensible and realizable a EC++ spei�ation based on C is. For theimplementation our objetive is to estimate how expensive upgrading a C ompiler toEC++ is and to approximate how muh additional work is required for an upgradeto C++. As in the rest of this thesis, we will fous solely on language issues, and arenot onerned with the runtime libraries.4.1. Spei�ation AnalysisIn this setion, we will use metris to quantify and ompare the physial extent of thetwo alternative EC++ spei�ations. Additionally, we will apply a metri to quantifythe funtional omplexity of the spei�ations. We ompare the sizes of the respetivegrammars in Setion 4.1.1. In Setion 4.1.2, we ompare the textual extent of theo�ial EC++ spei�ation with the estimated extent of the alternative spei�ation.Quantifying the funtional omplexity of a spei�ation is a di�ult task. We regardedalpha metris as the most suitable metri for this, whih we apply in Setion 4.1.3.4.1.1. Complexity of the GrammarsReall from Setion 2.2.2, that along with their spei�ations, eah of the three lan-guages (C, EC++, and C++) provide a grammar that aepts the assoiated lan-guage. For the alternative EC++ spei�ation, we onstruted a grammar in thesame manner�but based on C rather than C++�(see Appendix B). The o�ialEC++ grammar is spei�ed based on C++, omitting ertain rules or parts of rules.The alternative grammar is spei�ed in the same way, but in di�erene to the C gram-mar. In addition to removing rules, it is also required to introdue new rules and toextend some.To ompare the o�ial EC++ grammar with the alternative EC++ grammar, weanalyze the number of rules and the number of hanged rules. Also, we examine theextent of the grammars they are based on: C++ for the o�ial grammar and C forthe alternative grammar. 29

4. Metris

Figure 4.1.: Categorization of the rules of the o�ial EC++ grammar.4.1.1.1. O�ial EC++ grammarThe C++ grammar onsists of 205 rules. The EC++ spei�ation removes 36 of theseompletely, beause these over features that not present in EC++. Also beause ofthe funtionality removed from C++, 24 of the remaining rules need to be modi�ed.What remains are 145 rules that are appliable for EC++ unaltered. Thus, de�ningthe EC++ grammar in this way requires the 145 unmodi�ed rules and the 24 adjustedrules, whih is a total of 169 rules that are relevant for EC++, as depited in Figure 4.1.4.1.1.2. Alternative EC++ grammarThe C grammar is presented in the C spei�ation as 136 rules. For the de�nition ofthe EC++ grammar based on C, new rules for the additional EC++ features mustbe added. 45 new rules are added to the C grammar. Most of these are exatly thesame as in the o�ial EC++ grammar or with small adjustments. To �t the new rulesinto the base grammar, and to address the inompatibilities between C and EC++,27 rules need to be modi�ed and 14 have to be removed. Relevant for this alternativeEC++ grammar are the 96 unmodi�ed C grammar rules, the 27 modi�ed rules, andthe 45 newly introdued rules. In sum, 167 rules are relevant for the alternative EC++grammar. This omposition is depited in Figure 4.2.4.1.1.3. ConlusionWe observe that both grammars have approximately the same extent when omparingthe number of rules relevant for EC++. To measure the amount that must be hangedompared to the base grammars, we analyze how many unhanged rules of the basisgrammar the EC++ grammars ontain. In the alternative grammar, due to many new30

4.1. Spei�ation Analysis

Figure 4.2.: Categorization of the rules of the C�based EC++ grammar.rules, the unhanged C part makes about 57% of all EC++ relevant rules. For theo�ial grammar, about 86% of the EC++ relevant rules are unhanged rules of theC++ grammar. Hene, the extent of both grammars is very muh the same, but forthe o�ial version a bigger portion of its basis an be retained, whereas the alternativegrammar needs to introdue a signi�ant amount of hanges and new rules. Note thata grammar for itself has only limited expressiveness and a de�nition of its semantis isneessary. The semantis are veri�ed in the semanti analysis phase of the ompiler.4.1.2. Textual ExtentIn this setion, we will measure the textual extent of the o�ial EC++ spei�ationand estimate the extent of the alternative spei�ation. The metri we use primarilyis the number of paragraphs of the spei�ations. The average length of paragraphs,as well as the amount of information per paragraph are omparable in the C and theC++ spei�ation. So, measuring the number of paragraphs is suitable. Also, theo�ial EC++ spei�ation often states to remove spei� paragraphs, whih an bemeasured diretly. There are two things we will ompare. First, how muh of the basespei�ation is still used in the EC++ spei�ation based on it. Seond, the sizes ofthe di�erential EC++ spei�ations.4.1.2.1. O�ial EC++ Spei�ationThe o�ial EC++ spei�ation is based on the C++ spei�ation, whih spans 1516paragraphs. For EC++, 411 paragraphs are removed from C++, resulting in 1105paragraphs relevant for EC++. About 20% of these need modi�ations, so about31

4. Metris80% of the EC++ relevant paragraphs are unhanged paragraphs from the C++spei�ation. The o�ial EC++ spei�ation itself onsists of 234 short statements,e. g. �Beause EC++ omits exeptions, a funtion never has a funtion try�blok.<2nd par.>�.4.1.2.2. Alternative EC++ Spei�ationThe C spei�ation on whih the alternative EC++ spei�ation is based ontains668 paragraphs. To add the additional funtionality of EC++, the respetive setionsfrom the C++ spei�ation must be added, whih span 368 paragraphs, resulting in1036 paragraphs relevant for EC++ so far. However, the information of the new fun-tionality not in the respetive C++ hapters is still missing. As said in Setion 2.2.3,still many new paragraphs must be inserted.4.1.2.3. ConlusionIt is di�ult to ompare the two EC++ spei�ations, sine�due to reation of thealternative spei�ation based on C being impratial�, we an only estimate theextent of the alternative one. However, as mentioned in Setion 2.2.3, we estimate theextent of the alternative spei�ation to be about 150�200 pages, magnitudes biggerthan the o�ial spei�ation, whih �ts on 18 pages.4.1.3. Alpha MetrisAlpha metris are used on a spei� input text to yield an alpha value, whih relatesto the omplexity of the text. Alpha metris are desribed in [23, 24, 7℄. We willdesribe how to alulate the alpha value and how to use it to ompute the values forthe C, the EC++, and the C++ spei�ations. To alulate it, we �rst have to onvertthe text�i. e. the spei�ation�into a string of bits. To do that, eah harater isonverted into a series of six bits using a ode table. The bit string of the whole textis interpreted as a Brownian walk, where 1 means a step up and 0 means a step down.Figure 4.3 shows portions of the walks of the C, EC++, and C++ spei�ations.The next step requires to determine the long�range orrelations of the text. Theyare omputed using Equations 4.1 and 4.2.
F 2(l) ≡ [∆y(l)]2 − ∆y(l)

2 (4.1)
∆y(l) ≡ y(l0 + l) − y(l0) (4.2)Where

F is the root of mean square �utuation about the average of displaement,
l is the window size�the distane between two points on the walk,32

4.1. Spei�ation Analysis

-200

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 2000 4000 6000 8000 10000 12000 14000

C99 walk
EC++ walk

C++ walk

Figure 4.3.: Portions of the Brownian walks of the C, EC++, and C++ spei�ation.Spei�ation Alpha valueC++ 0.660C 0.648EC++ 0.609Table 4.1.: Alpha values of the C++, C and EC++ spei�ations.
l0 is the starting point of the walk,
y(x) is the value of the walk at position x.We alulate the values of F (l) for all possible values of l. The highest l values mustbe disarded, beause the window size is lose to the sample size. The funtion F (l)approximately desribes a power law, thus

F (l) ≈ lα (4.3)The power law an be observed most easily, when plotting F (l) using double logarith-mi axes. Then, the alpha value is the slope of the urve. If the string sequene isunorrelated, then α ≈ 0.5. As an example, we applied the alpha metri on a text ofrandom haraters. Figure 4.4 shows F (l) for that input. The resulting alpha value isvery lose to 0.5. This result is expeted, beause a random data sequene has smallor no orrelations.We then alulated the alpha values for the C++ spei�ation, the C spei�ation,and the o�ial EC++ spei�ation (see Figures 4.5, 4.6, and 4.7). The resulting alphavalues an be seen in the following Table 4.1. 33

4. Metris

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1 2 3 4 5 6

lo
g
(F

(l
))

log(l)

F(l)

l
α

Figure 4.4.: Random input; α = 0.496.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 1 2 3 4 5 6 7

lo
g
(F

(l
))

log(l)

F(l)

l
α

Figure 4.5.: C++ spei�ation; α = 0.660.
34

4.1. Spei�ation Analysis

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 1 2 3 4 5 6 7

lo
g
(F

(l
))

log(l)

F(l)

l
α

Figure 4.6.: C spei�ation; α = 0.648.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1 2 3 4 5 6

lo
g
(F

(l
))

log(l)

F(l)

l
α

Figure 4.7.: O�ial EC++ spei�ation; α = 0.609.
35

4. Metris Subjet Loations Lines of odeExtensions 67 791Modi�ations 21 31New funtions 33 1161Table 4.2.: Lines of ode added to vb.The results are approximately the same for all three spei�ations. However, in [23℄,Kokol applies alpha metris to di�erent but funtionally equivalent spei�ations andthe resulting alpha values are quite di�erent. He onludes �[...℄ to �nd out the reasonsmuh more researh will be needed�. Hene, we annot interpret from the results, thatthe three spei�ations are of omparable funtional omplexity.4.2. Implementation AnalysisTo estimate the extent and omplexity of upgrading a C ompiler to support EC++,we analyze our implementation regarding how many lines of ode we needed to write(Setion 4.2.1), and how the binary size of the ompiler hanged (Setion 4.2.2). InSetion 4.2.3, we further examine the omplexity by alulating MCabe's ylomatiomplexity and observe, how it is a�eted by the upgrade. In Setion 4.2.4, we omparethe sizes of the GNU C and C++ ompilers in an attempt to quantify the work thatwould be neessary to further upgrade an EC++ ompiler to a full C++ ompiler.4.2.1. Extent of the Soure CodeIn this setion, we will use the most traditional metri for measuring the size of soureode. This metri is lines of ode (LOC). LOCs are non-blank, non-omment lines inthe text of the soure ode. Thus, before ounting we stripped the ode of ommentsand empty lines. We will evaluate the size of vb with and without EC++ support.Also, we will ategorize the hanges applied to the vb soure ode. The threeategories we used are extensions, modi�ations, and new funtions.
• An extension is ode that extends the original funtionality.
• A modi�ation is ode where the original funtionality of vb had to be altered.These are mostly one�liners that reate a branh.
• New funtions that have been implemented for EC++ support.Table 4.2 shows the number of lines of ode added for eah ategory. The loationsolumn ontains how many di�erent loations needed editing for the extensions andmodi�ations, and number of new funtions. So, in total 1983 LOCs were introduedfor the EC++ funtionality. Sine we estimate the funtionality implemented to be36

4.2. Implementation AnalysisGCC all used strip without EC++ with EC++ Relation
gcc no 544 kB 581 kB +7%
gcc -O3 no 510 kB 540 kB +6%
gcc -Os no 379 kB 401 kB +6%
gcc yes 508 kB 544 kB +7%
gcc -O3 yes 476 kB 504 kB +6%
gcc -Os yes 344 kB 364 kB +6%Table 4.3.: Sizes of the vb program with and without EC++ support and usingdi�erent ompiler options.about 70%, the modi�ations for full EC++ will be about 2800 LOCs. The soureode of vb with EC++ support and one bak end has about 28000 LOCs. Thus,the EC++ extension makes up about 7% of the vb soure ode and about 10% withall features implemented.4.2.2. Program SizeAnother metri we applied is the evaluation of the ompiled program sizes. For theompilation of vb we used the GCC ompiler version 3.3.5 with di�erent optimizationsettings. We optionally used the UNIX ommand strip on these exeutable toremove the symbol information not required for the exeution. Figure 4.3 shows theresults. The inrement in size of vb with EC++ support is very muh the same, forany ompiler options used. The usage of strip does signi�antly a�et the programsize, however the relation of vb with and without EC++ support remains onstant.Considering the EC++ support to be 70% omplete, the estimated inrease of programsize with full EC++ support is about 9%�10%.4.2.3. Cylomati ComplexityThe evaluation of the ylomati omplexity of a software module was introduedmy MCabe in 1976 [25℄. MCabe's ylomati omplexity number (M) measuresthe number of paths through a software unit. It �is the most widely used memberof a lass of stati software metris� [8℄. The omplexity number orrelates to theunderstandability, maintainability, and testability of the soure ode. Calulating Mis a quik way to �nd funtions that are potentially error�prone and that should bereorganized. MCabe suggests in [26℄ to avoid funtions with M higher than 10 orto have a good reason for it being that high. In [8℄, Table 4.4 is presented, whihgives further interpretation of the ylomati number M. The ylomati omplexityis not a measure for the extent of software, but rather for its quality. We will use it37

4. MetrisCylomati Complexity Number (M) Risk Evaluation1�10 a simple program, without muh risk11�20 more omplex, moderate risk21�50 omplex, high risk programgreater than 50 untestable program (very high risk)Table 4.4.: Cylomati omplexity [8℄.funtion name M without EC++ M with EC++
type_expression2 616 682
var_declaration 266 285
declaration_specifiers 153 262
direct_declarator 77 90Table 4.5.: Cylomati numbers (M) of the vb funtions most edited.to see how omplex the vb is without the EC++ extensions and ompare it to itsomplexity with the EC++ funtionality inluded.Many of the vb funtions have inredible high values of ylomati omplexity.For example, 10 funtions have a value higher than 150 and 49 funtions have valueshigher than 50. Still, the vb is a very stable program, but extending funtions withsuh a high omplexity atually has shown to be error�prone and time�onsuming.For omparison, we applied the omplexity metri also on the GNU C ompiler. Theylomati number here is even higher, 50 funtions having an M value higher than100. Thus, it deems not untypial to have some funtions with very high ylomatinumbers.We will analyze the vb funtions that were edited the most for EC++ support, andsee how the modi�ations a�et the value of M. Table 4.5 shows the funtions that wereeditted the most for the EC++ funtionality and their omplexity with and withoutthe EC++ funtionality. Espeially the funtion declaration_specifiers hasinreased muh in omplexity, and more modularization of the additional funtionalityhas to be onsidered. Atually, all four of the funtions in Table 4.5 should be reviewedto be restrutured into less omplex funtions. Note that segmenting a funtion doesnot in general redue the total omplexity, but distributes it.Seondly, we will apply the ylomati omplexity metri to the funtions newlyintrodued for the EC++ funtionality. Table 4.6 shows the 33 new funtions andtheir assoiated ylomati numbers. Most of these funtions are of moderate or lessomplexity. However, at least the ones with a omplexity higher than 20 should bereviewed and be segmented into less omplex parts.38

4.2. Implementation Analysisfuntion name M
ecpp_declarator 53
ecpp_ctor_init_list 34
ecpp_mangle_arg 30
ecpp_check_access 26
ecpp_find_overloaded_func 21
ecpp_find_scope 20
ecpp_mangle_name 19
ecpp_transform_call 17
ecpp_struct_offset 16
ecpp_rank_arg_type 14
ecpp_find_best_overloaded_func 13
ecpp_find_member 13
ecpp_find_struct 13
ecpp_gen_default_dtor 9
ecpp_gen_default_ctor 9
ecpp_linkage_specification 9
ecpp_find_var 8

funtion name M
ecpp_find_ext_var 7
ecpp_call_ctor 6
ecpp_clone_tree 6
ecpp_access_specifier 6
ecpp_is_friend 5
ecpp_is_member_struct 5
ecpp_gen_set_vtable 5
ecpp_call_dtor 5
ecpp_dtor_epilog 5
ecpp_free_init_list 3
ecpp_mangle_nested_identifier 3
ecpp_add_friend 2
ecpp_dtor_prolog 2
ecpp_add_this_pointer 2
ecpp_auto_call_dtors 2
ecpp_auto_dtor 1Table 4.6.: Cylomati numbers (M) of the funtions new for EC++.4.2.4. Comparison of the GNU C and C++ CompilersIn this setion, we ompare the sizes of the GNU C and C++ ompilers [14℄. The GNUompiler olletion (GCC) originally was only a C ompiler, but by now it supportsmany additional language front ends, e. g. Ada, C++, Fortran, Java, Objetive�C,and Objetive�C++. The language front ends share a ommon internal struture andprodue an abstrat syntax tree, whih is then fed to the intermediate ode generatorand optimizer to �nally produe assembler ode.Table 4.7 shows the sizes of the C and C++ ompiler programs of di�erent versions(the name of C ompiler program is cc1 , that of the C++ program is cc1plus).The relation between the program sizes varies signi�antly depending on the version.One main reason of the ratio being smaller in newer versions is that modules ommonto both ompilers (e. .g.: optimizer, bak end) have grown in size. Thus, no learonlusion about the relation between the C and C++ extent an be made. Theabsolute size inrease does not hange between the di�erent versions. This implies,that the C++ front end has not been extended muh in newer versions.We also ompared the sizes of the soure ode of the C and C++ ompilers. We didnot ount omments or empty lines, just as we did for the soure ode in Setion 4.2.1.Table 4.8 shows the results, whih show the same tendenies as for the program sizes.The ratio between C and C++ ode also dereases with new versions. The absolute39

4. MetrisGCC version cc1 size cc1plus size Di�erene Relation4.0.0 4288 kB 4716 kB +428 kB +10%3.3.5 3036 kB 3550 kB +514 kB +17%2.95.4 1648 kB 2097 kB +449 kB +27%Table 4.7.: Sizes of the GNU C and C++ ompilers.GCC version C lines of ode C++ lines of ode Di�erene Relation4.0.0 311 k 374 k +63 k +20%3.3.5 247 k 312 k +65 k +26%2.95.4 166 k 229 k +63 k +38%Table 4.8.: Sizes of the soures of the GNU C and C++ ompilers.di�erenes�whih are learly dediated to the C++ front end�do not hange muhaross the di�erent versions. This on�rms the impliation made about C's and C++'sprogram sizes: that the C++ front end has not been extended muh in more reentversions.4.2.5. ConlusionBy measuring the extent of the soure ode and the size of the program with andwithout EC++ support, we evaluated an inrease by about 10% due to the EC++upgrade. Our analysis of the sizes of the GCC ompilers did not yield an estimateof the relative inrease of the C++ ompiler ompared to the C ompiler. However,we ould onlude that the size of the C++ front end has remained very onstantaross di�erent versions. The ylomati omplexity analysis reveals funtions whihhave a high omplexity and thus should be reviewed for restruturing. Some funtionsof vb have a very high omplexity whih in some ases even inreased through theupgrade to EC++. Those funtions are andidates for future restruturing. Overall,we estimate the e�ort of upgrading a C ompiler to support EC++ to be moderate.

40

5. Related WorkThe basi onept we use to implement the EC++ extensions into a C ompiler is notnovel, but has been used in other ompilers. To reate a EC++ ompiler by upgradinga C ompiler however, is a new approah sine all other EC++ ompilers in the marketare restrited C++ ompilers. Designing languages and de�ning spei�ations basedon existing languages and spei�ations�like C++ was designed based on C, andEC++ is spei�ed based on C++�is a ommon pratie. In this hapter we examinespei� representatives of these ategories.The approah we use to implement the additional EC++ funtionality, is to re-due the new EC++ onstruts to equivalent C onstruts. This is basially the sameonept that Cfront [39℄ uses. Cfront was the original ompiler for C++, whih on-verted C++ to C. In ontrast to Cfront, we do not generate C ode, but perform thetransformations from EC++ to C onstruts in vb's internal data strutures.There are a limited number of EC++ ompiler vendors in the market, inludingGreen Hills Software [15℄, IAR Systems [16℄, and TASKING [35℄. All o�ered ompil-ers are C, C++, and EC++ ompliant ompilers. Thus, it is almost ertain, that theEC++ ompilers are restrited C++ ompilers. To our knowledge, there is no EC++ompiler available, that is based on a C ompiler. The only EC++ library imple-mentation that is widely available is developed by Dinkumware [10℄. This library isompatible with most popular C++ ompilers. Any of the ompatible C++ ompil-ers an be used together with the EC++ library to ompile EC++ appliations. Aninteresting suggestion by Dinkumware is to mix the EC++ library with the standardtemplate library (STL) in C++ appliations.The Java Miro Edition (Java ME) [34℄ by Sun Mirosystems, is a set of spei�-ations of Appliation Programming Interfaes (APIs) for embedded devies. TheseAPIs are muh smaller and have redued funtionality ompared to the ones used forPC appliations. Whih of the spei�ations apply is de�ned by the appliation en-vironment. One of the most prominent appliations of Java ME tehnology are JavaMIDlets [44℄. MIDlets are frequently used in mobile phones to employ third partyprograms suh as games. There are two API spei�ations that apply to MIDlets: oneis devie�independent (CLDC [31℄), and the other is devie�dependent (MIDP [30℄).In ontrast to EC++, the Java language is not restrited for MIDlets. EC++ ap-pliations are eventually deployed as programs onsisting of mahine ode that runsdiretly on the target proessor. On the other hand, MIDlets are ompiled into byte�ode whih is run in a virtual mahine on the mobile devie. Both EC++ and MIDletsuse smaller libraries designed for embedded systems. However, the MIDlet libraries are41

5. Related Workdesigned espeially for mobile devies, whereas the EC++ library targets no spei�ategory of embedded systems.The Java Card tehnology [33℄ is also developed by Sun Mirosystems, whih en-ables small Java programs to be run on smart ards. Smart ards are �de�ned as anypoket�sized ard with embedded integrated iruits� [47℄. The Java Card spei�a-tion [32℄ ontains spei�ations for the virtual mahine and the runtime environmentfor Java Card appliations. Similar to EC++ being a restrited C++, a Java Cardvirtual mahine supports only a subset of the Java language. Features not supportedby the Java Card virtual mahine inlude threads, loning, char , double , float ,and long types. A garbage olletor is not required for a virtual mahine, but anoptionally be supported. EC++ and Java Card have in ommon, that they both usesmaller libraries designed for embedded systems. However, in ontrast to the EC++library targeting no spei� lass of embedded systems, the Java Card libraries aredesigned espeially for smart ards.The development of programming languages by extension is quite ommon. EC++and C++ extend C by objet�oriented features, a trend whih ourred to manylanguages. For example, Common Lisp [40℄ introdues the objet�oriented paradigmto Lisp [42℄. �Lisp is a family of omputer programming languages� and �a numberof dialets have existed over its history� [42℄. Common Lisp is an ANSI standard,whih was developed as an e�ort to standardize divergent Lisp dialets. By inludingthe Common Lisp Objet System (CLOS), objet�oriented programming is supportedin Common Lisp. The development history of Lisp and Common Lisp omparedto the development of C, C++, and EC++ di�er greatly. However, they have inommon, that an older language�or family of languages�has been extended withobjet�oriented features.Another example, where a language has been extended with objet�oriented featuresis Objet Pasal [45℄. Objet Pasal inserts objet�oriented funtionality into Pasal.The Delphi language [45℄ also evolved from Pasal and is losely related to ObjetPasal. In 1993, the Tehnial Committee X3J9 reated a draft for objet�orientedextensions of Pasal [36℄. This draft is based on the ISO spei�ations of Pasal [17℄and Extended Pasal [19℄. The draft never advaned to a standard, but inspired otherlanguages, suh as Delphi. To some extent, this approah is omparable to the one weintended for the spei�ation of EC++ based on C. However, the biggest di�erenelies in the level of spei�ty on whih the two de�nitions are done. The way in whihthe draft spei�es the extensions is more abstrat than we aimed for in the EC++spei�ation. Our goal was a spei�ation in the same manner as the o�ial EC++spei�ation, thus a omplete list of all textual adjustments required on the basis. Thedraft for the Pasal extensions does not de�ne how to textually adjust the bases, butrather states the modi�ations on a more funtional level.
42

6. Future WorkIn this hapter, we present the tasks for the future development for the topis of thisthesis.
• Implementation of missing featuresThe EC++ extension of the vb ompiler is laking the features spei�ed inSetion 3.3 (mainly referenes and user�de�ned operators). Obviously, the taskof ompleting the EC++ features in order to reah EC++ ompliane has highpriority.
• Additional optimizationsAs stated in Setion 3.2.2.3, dynami funtion alls are ostly ompared to sta-ti funtion alls. This is primarily due to two additional pointer derefereningsbeing required. For further optimization, a global program analysis an be per-formed to �nd loations in whih a dynami funtion all atually always allsthe same funtion. In these loations, the dynami alls an safely be replaedwith stati alls [2℄.
• Inlude a standard EC++ libraryThe o�ial EC++ spei�ation [13℄ de�nes the EC++ language, as well as thestandard EC++ library. In this thesis and in the vb implementation we didnot onern ourselves with the library. However, to fully support EC++, theompiler must be aompanied by a standard EC++ library. There are basiallytwo options: the library an be ustom�built, or a third party library is inluded.
• Additional grammar metrisIn Setion 4.1.1, we ompared the extent of the o�ial EC++ grammar [12℄,and the alternative EC++ grammar based on C (stated in Appendix B) byounting the number of rules. In [27℄, additional metris for the omparisonof grammars are spei�ed. One of the main ideas in this paper is to interpretthe grammars as programs. This is done by mapping the grammar elementsonto elements of programs: �The proedures orrespond to non�terminals, andproedure bodies are the right�hand sides of the prodution rules. The ontrolprimitives are the union and onatenation operations of ontext free grammars,whih orrespond to alternation and sequening respetively� [27℄. This way,metris typially used for programs an be applied to grammars. For example,43

6. Future Workthe ylomati omplexity metri whih we applied on the implementation ofvb in Setion 4.2.3, an be applied on the alternative EC++ grammars.

44

7. ConlusionEC++ is o�ially de�ned in terms of di�erenes to C++. In this thesis, we took adi�erent approah on EC++ and examined it in terms of di�erenes to C. De�ningEC++ based on C from a funtional point of view resulted in a moderately sized listof inompatibilities and di�erent funtionality between the two languages. This set ofissues proved to be a quite onise and desriptive de�nition of EC++ based C. Ourattempt to speify EC++ as textual di�erenes to the C spei�ation turned out tobe unreasonable both in terms of usability and produability. Thus, this low level ofabstration was inappropriate for an alternative de�nition. However, the di�erenesviewed on a higher abstration level�from a funtional point of view�yielded a usablede�nition.We also used this funtional de�nition as a guideline for our implementation of aEC++ ompiler by extending a C ompiler. We applied metris to measure the formof the spei�ations, by evaluating the textual extent. This provided an impression ofthe size and omplexity of the spei�ations. Using metris to measure the ontent ofspei�ations in terms of omplexity turned out to be of little use. Basially, the onlystatement that ould be onluded from the results of the alpha metri is that thespei�ations are not just random texts. However, the ideas behind the alpha metriare interesting, but more researh is required to improve their usability.Implementing a EC++ ompiler by extending a C ompiler proved to be reasonable.The inompatibilities and di�erent funtionality required signi�ant adjustment andextension of the front end. But the required hanges and extensions were limitedonly to the front end of the ompiler. The intermediate ode, optimizations, andbak end of the C ompiler an be used for EC++ without hange. All additionalEC++ funtionality ould be redued to equivalent C onstruts. Implementing theEC++ features in this way proved to be realizable quite straightforward. Applyingmetris to evaluate the soure ode and program size gave an impression of the extentof the e�ort. The evaluation of the ylomati omplexity revealed hot�spots of theimplementation where restruturing is appropriate to derease omplexity and improvemaintainability and understandability.
45

7. Conlusion

46

A. Spei�ation of EC++ basedon ISO C996.5.2.2 Funtion alls
• Adjust1 <1st par.>:The expression that denotes the alled funtion shall have type lvalue that refersto a funtion (in whih ase the funtion�to�pointer standard onversion (4.3)is suppressed on the post�x expression), or pointer to funtion returning voidor returning an objet type other than an array type. or a member funtionall. For a member funtion all, the post�x expression shall be an impliit(9.3.1, 9.4) or expliit lass member aess (5.2.5) whose id�expression is afuntion member name, or a pointer�to�member expression (5.5) seleting afuntion member. The �rst expression in the post�x expression is then alledthe objet expression, and the all is as a member of the objet pointed to orreferred to. In the ase of an impliit lass member aess, the implied objetis the one pointed to by this . [Note: a member funtion all of the form

f() is interpreted as (* this).f() (see 9.3.1). ℄ If a funtion or memberfuntion name is used, the name an be overloaded (lause 13), in whih asethe appropriate funtion shall be seleted aording to the rules in 13.3. Thefuntion alled in a member funtion all is normally seleted aording to thestati type of the objet expression (lause 10), but if that funtion is virtualand is not spei�ed using a quali�ed�id then the funtion atually alled willbe the �nal overrider (10.3) of the seleted funtion in the dynami type of theobjet expression [Note: the dynami type is the type of the objet pointedor referred to by the urrent value of the objet expression. 12.7 desribes thebehavior of virtual funtion alls when the objet expression refers to an objetunder onstrution or destrution. ℄
• Replae <2nd par.>with:If no delaration of the alled funtion is visible from the sope of the all theprogram is ill�formed.
• Omit <6th par.>1Text underlined is inserted into and text rossed out is removed from the C99 spei�ation. 47

A. Spei�ation of EC++ based on ISO C99
• Replae <7th par.>with:When a funtion is alled, eah parameter (8.3.5) shall be initialized (8.5, 12.8,12.1) with its orresponding argument. When a funtion is alled, the parametersthat have objet type shall have ompletely�de�ned objet type. [Note: thisstill allows a parameter to be a pointer or referene to an inomplete lass type.However, it prevents a passed�by�value parameter to have an inomplete lasstype. ℄ During the initialization of a parameter, an implementation may avoid theonstrution of extra temporaries by ombining the onversions on the assoiatedargument and/or the onstrution of temporaries with the initialization of theparameter (see 12.2). The lifetime of a parameter ends when the funtion inwhih it is de�ned returns. The initialization and destrution of eah parameterours within the ontext of the alling funtion. [Example: the aess of theonstrutor, onversion funtions or destrutor is heked at the point of all inthe alling funtion. ℄ The value of a funtion all is the value returned by thealled funtion exept in a virtual funtion all if the return type of the �naloverrider is di�erent from the return type of the statially hosen funtion, thevalue returned from the �nal overrider is onverted to the return type of thestatially hosen funtion.
• Omit <9th par.>
• New paragraph:Calling a funtion through an expression whose funtion type has a languagelinkage that is di�erent from the language linkage of the funtion type of thealled funtion's de�nition is unde�ned (7.5).
• New paragraph:The type of the funtion all expression is the return type of the statially hosenfuntion (i. e., ignoring the virtual keyword), even if the type of the funtionatually alled is di�erent. This type shall be a omplete objet type, a referenetype or the type void .
• New paragraph:A funtion an be delared to aept fewer arguments (by delaring defaultarguments (8.3.6)) or more arguments (by using the ellipsis, ... 8.3.5) thanthe number of parameters in the funtion de�nition (8.4). [Note: this impliesthat, exept where the ellipsis (...) is used, a parameter is available for eahargument. ℄
• New paragraph:Reursive alls are permitted, exept to the funtion named main (3.6.1).
• New paragraph:A funtion all is an lvalue if and only if the result type is a referene.48

B. Lexial Grammar
B.1. Lexial Grammar
B.1.1. Lexial Elements

token:keywordidenti�eronstantstring�literalpuntuatorpreproessing�token:header�nameidenti�erpp�numberharater�onstantstring�literalpuntuatorboolean�literaleah non�white�spae harater that annot be one of the above 49

B. Lexial GrammarB.1.2. Keywordskeyword: one of
auto break case char
const continue default do
double else enum extern
float for goto if
inline int long register
restrict return short signed
sizeof static struct switch
typedef union unsigned void
volatile while _Bool _Complex
_Imaginary
asm bool catch class
const_cast delete dynamic_cast explicit
export false friend mutable
namespace new operator private
protected public reinterpret_cast static_cast
template this throw true
try typeid typename using
virtual wchar_tB.1.3. Identi�ersidenti�er:identi�er�nondigitidenti�er identi�er�nondigitidenti�er digitidenti�er�nondigit:nondigituniversal�harater�nameother implementation�de�ned haratersnondigit: one of

_ a b c d e f g h i j k l m
n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Zdigit: one of
0 1 2 3 4 5 6 7 8 950

B.1. Lexial GrammarB.1.4. Universal Charater Namesuniversal�harater�name:
\u hex�quad
\U hex�quad hex�quadhex�quad:hexadeimal�digit hexadeimal�digithexadeimal�digit hexadeimal�digitB.1.5. Constantsonstant:integer�onstant�oating�onstantenumeration�onstantharater�onstantboolean�literalinteger�onstant:deimal�onstant integer�su�xoptotal�onstant integer�su�xopthexadeimal�onstant integer�su�xoptdeimal�onstant:nonzero�digitdeimal�onstant digitotal�onstant:
0otal�onstant otal�digithexadeimal�onstant:hexadeimal�pre�x hexadeimal�digithexadeimal�onstant hexadeimal�digithexadeimal�pre�x: one of:
0x 0Xnonzero�digit: one of:
1 2 3 4 5 6 7 8 9otal�digit: one of:
0 1 2 3 4 5 6 7 51

B. Lexial Grammarhexadeimal�digit: one of:
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E Finteger�su�x:unsigned�su�x long�su�xoptunsigned�su�x long�long�su�xlong�su�x unsigned�su�xoptlong�long�su�x unsigned�su�xoptunsigned�su�x: one of:
u Ulong�su�x: one of:
l Llong�long�su�x: one of:
ll LL�oating�onstant:deimal��oating�onstanthexadeimal��oating�onstantdeimal��oating�onstant:frational�onstant exponent�partopt �oating�su�xoptdigit�sequene exponent�part �oating�su�xopthexadeimal��oating�onstant:hexadeimal�pre�x hexadeimal�frational�onstantbinary�exponent�part �oating�su�xopthexadeimal�pre�x hexadeimal�digit�sequenebinary�exponent�part �oating�su�xoptfrational�onstant:digit�sequeneopt . digit�sequenedigit�sequene .exponent�part:
e signopt digit�sequene
E signopt digit�sequenesign: one of
+ -

52

B.1. Lexial Grammardigit�sequene:digitdigit�sequene digithexadeimal�frational�onstant:hexadeimal�digit�sequeneopt . hexadeimal�digit�sequenehexadeimal�digit�sequene .binary�exponent�part:
p signopt digit�sequene
P signopt digit�sequenehexadeimal�digit�sequene:hexadeimal�digithexadeimal�digit�sequene hexadeimal�digit�oating�su�x: one of:
f l F Lenumeration�onstant:identi�erharater�onstant:
’ �har�sequene ’
L’ �har�sequene ’�har�sequene:�har�har�sequene �har�har:any member of the soure harater set exept the single�quote ’ , bak-slash \ , or new�line harater esape�sequeneesape�sequene:simple�esape�sequeneotal�esape�sequenehexadeimal�esape�sequeneuniversal�harater�namesimple�esape�sequene: one of
\’ \" \? \\
\a \b \f \n \r \t \v

53

B. Lexial Grammarotal�esape�sequene:
\ otal�digit
\ otal�digit otal�digit
\ otal�digit otal�digit otal�digithexadeimal�esape�sequene:
\x hexadeimal�digithexadeimal�esape�sequene hexadeimal�digitboolean�literal:
true
falseB.1.6. String Literalsstring�literal:
" s�har�sequeneopt "
L" s�har�sequeneopt "s�har�sequene:s�hars�har�sequene s�hars�har:any member of the soure harater set exept the double�quote " , bak-slash \ , or new�line harateresape�sequeneB.1.7. Puntuatorspuntuator: one of

[] () { } . ->
++ -- & * + - ˜ !
/ % « » < > <= >=
== != ˆ | & & || ?
: ; ... = * = /= %= +=
-= «= »= &= ˆ= |= , #
<: :> <% %> %: %:%:
:: . * -> * new delete and
and_eq bitand bitor compl not not_eq
or or_eq xor xor_eq54

B.1. Lexial GrammarB.1.8. Header Namesheader�name:
< h�har�sequene >
" q�har�sequene "h�har�sequene:h�harh�har�sequene h�harh�har:any member of the soure harater set exept the new�line harater and

>q�har�sequene:q�harq�har�sequene q�harq�har:any member of the soure harater set exept the new�line harater and
" �

B.1.9. Preproessing Numberspp�number:digit
. digitpp�number digitpp�number identi�er�nondigitpp�number e signpp�number E signpp�number p signpp�number P signpp�number . 55

B. Lexial GrammarB.2. Phrase Struture GrammarB.2.1. Expressionsprimary�expression:identi�eronstantstring�literal
(expression)
thisid�expressionid�expression:unquali�ed�idquali�ed�idunquali�ed�id:identi�eroperator�funtion�idonversion�funtion�id
˜ lass�namequali�ed�id:
:: opt nested�name�spei�er unquali�ed�id
:: identi�erpost�x�expression:primary�expressionpost�x�expression [expression]post�x�expression (argument�expression�listopt)post�x�expression . identi�erpost�x�expression -> identi�erpost�x�expression ++post�x�expression --
(type�name) { initializer�list }
(type�name) { initializer�list , }type�spei�er (expressionopt)argument�expression�list:assignment�expressionargument�expression�list , assignment�expression56

B.2. Phrase Struture Grammarunary�expression:post�x�expression
++ unary�expression
-- unary�expressionunary�operator ast�expression
sizeof unary�expression
sizeof (type�name)new�expressiondelete�expressionunary�operator: one of
& * + - ˜ !new�expression:
:: opt new new�plaementopt new�type�id new�initializeropt

:: opt new new�plaementopt (type�id) new�initializeroptnew�plaement:
(expression�list)new�type�id:type�spei�er�seq new�delaratoroptnew�delarator:ptr�operator new�delaratoroptdiret�new�delaratordiret�new�delarator:
[expression]diret�new�delarator [onstant�expression]new�initializer:
(expression�listopt)delete�expression:
:: opt delete ast�expression
:: opt delete [] ast�expressionast�expression:unary�expression
(type�name) ast�expression

57

B. Lexial Grammarpm�expression:ast�expressionpm�expression . * ast�expressionpm�expression -> * ast�expressionmultipliative�expression:ast�expressionmultipliative�expression * ast�expression pm�expressionmultipliative�expression / ast�expression pm�expressionmultipliative�expression % ast�expression pm�expressionadditive�expression:multipliative�expressionadditive�expression + multipliative�expressionadditive�expression - multipliative�expressionshift�expression:additive�expressionshift�expression « additive�expressionshift�expression » additive�expressionrelational�expression:shift�expressionrelational�expression < shift�expressionrelational�expression > shift�expressionrelational�expression <= shift�expressionrelational�expression >= shift�expressionequality�expression:relational�expressionequality�expression == relational�expressionequality�expression != relational�expressionAND�expression:equality�expressionAND�expression & equality�expressionexlusive�OR�expression:AND�expressionexlusive�OR�expression ˆ AND�expressioninlusive�OR�expression:exlusive�OR�expressioninlusive�OR�expression | exlusive�OR�expression
58

B.2. Phrase Struture Grammarlogial�AND�expression:inlusive�OR�expressionlogial�AND�expression && inlusive�OR�expressionlogial�OR�expression:logial�AND�expressionlogial�OR�expression || logial�AND�expressiononditional�expression:logial�OR�expressionlogial�OR�expression ? expression : onditional�expressionassignment�expression:onditional�expressionunary�expression assignment�operator assignment�expressionassignment�operator: one of
= * = /= %= += -= «= »= &= ˆ= |=expression:assignment�expressionexpression , assignment�expressiononstant�expression:onditional�expression

B.2.2. Delarationsdelaration:delaration�spei�ers init�delarator�listopt ;linkage�spei�ationasm�de�nitiondelaration�spei�ers:storage�lass�spei�er delaration�spei�ersopttype�spei�er delaration�spei�ersopttype�quali�er delaration�spei�ersoptfuntion�spei�er delaration�spei�ersoptinit�delarator�list:init�delaratorinit�delarator�list , init�delarator 59

B. Lexial Grammarinit�delarator:delaratordelarator = initializerstorage�lass�spei�er:
typedef
extern
static
auto
register
friendtype�spei�er:
void
char
short
int
long
float
double
signed
unsigned
_Bool
_Complex
_Imaginarystrut�or�union�spei�erenum�spei�ertypedef�name
bool
:: opt nested�name�spei�eropt lass�enum�typedef�namelass�spei�erelaborated�type�spei�ertype�spei�er�seq:type�spei�er type�spei�er�seqoptstrut�or�union�spei�er:strut�or�union identi�eropt { strut�delaration�list }strut�or�union identi�erstrut�or�union:
struct
union

60

B.2. Phrase Struture Grammarstrut�delaration�list:strut�delarationstrut�delaration�list strut�delarationstrut�delaration:spei�er�quali�er�list strut�delarator�list ;lass�enum�typedef�name:lass�nameenum�nametypedef�nameelaborated�type�spei�er:lass�key :: opt nested�name�spei�eropt identi�er
enum :: opt nested�name�spei�eropt identi�erspei�er�quali�er�list:type�spei�er spei�er�quali�er�listopttype�quali�er spei�er�quali�er�listoptstrut�delarator�list:strut�delaratorstrut�delarator�list , strut�delaratorstrut�delarator:delaratordelaratoropt : onstant�expressionenum�spei�er:
enum identi�eropt { enumerator�list }
enum identi�eropt { enumerator�list , }
enum identi�er
enum identi�eropt { }enumerator�list:enumeratorenumerator�list , enumeratorenumerator:enumeration�onstantenumeration�onstant = onstant�expressiontype�quali�er:
const
restrict
volatile 61

B. Lexial Grammarfuntion�spei�er:
inline
virtual
explicitasm�de�nition:
asm { string�literal }linkage�spei�ation:
extern string�literal { delaration�listopt } ;
extern string�literal delarationdelarator:pointeropt diret�delaratordiret�delarator:identi�er
(delarator)diret�delarator [type�quali�er�listopt assignment�expressionopt]diret�delarator [static type�quali�er�listopt assignment�expression

]diret�delarator [type�quali�er�list static assignment�expression]diret�delarator [type�quali�er�listopt *]diret�delarator (parameter�type�list)diret�delarator (identi�er�listopt)delarator�iddiret�delarator (parameter�type�listopt) v�quali�er�seqoptdiret�delarator [onstant�expressionopt]delarator�id:id�expression
:: opt nested�name�spei�eropt type�enum�typedef�namepointer:
* type�quali�er�listopt v�quali�er�seqopt

* type�quali�er�listopt v�quali�er�seqopt pointer
& type�quali�er�listopt

& type�quali�er�listopt pointertype�quali�er�list:type�quali�ertype�quali�er�list type�quali�er
62

B.2. Phrase Struture Grammarparameter�type�list:parameter�listparameter�list , ...parameter�listopt ...parameter�list:parameter�delarationparameter�list , parameter�delarationparameter�delaration:delaration�spei�ers delaratordelaration�spei�ers abstrat�delaratoroptdelaration�spei�ers delarator = assignment�expressiondelaration�spei�ers abstrat�delaratoropt = assignment�expressionidenti�er�list:identi�eridenti�er�list , identi�ertype�name:spei�er�quali�er�list abstrat�delaratoroptabstrat�delarator:pointerpointeropt diret�abstrat�delaratordiret�abstrat�delarator:
(abstrat�delarator)diret�abstrat�delaratoropt [assignment�expressionopt]diret�abstrat�delaratoropt [*]diret�abstrat�delaratoropt (parameter�type�listopt)diret�abstrat�delaratoropt (parameter�type�list) v�quali�er�seqoptdiret�abstrat�delaratoropt [onstant�expressionopt]v�quali�er�seq:v�quali�er v�quali�er�seqoptv�quali�er: Same as type�quali�er
const
volatiletypedef�name:identi�er

63

B. Lexial Grammarinitializer:
= assignment�expression
= { initializer�list }
= { initializer�list , }
(expression�list)initializer�list:designationopt initializerinitializer�list , designationopt initializerdesignation:designator�list =designator�list:designatordesignator�list designatordesignator:
[onstant�expression]
. identi�er

B.2.3. Statementsstatement:labeled�statementompound�statementexpression�statementseletion�statementiteration�statementjump�statementlabeled�statement:identi�er : statement
case onstant�expression : statement
default : statementompound�statement:
{ blok�item�listopt }blok�item�list:blok�itemblok�item�list blok�item64

B.2. Phrase Struture Grammarblok�item:delarationstatementexpression�statement:expressionopt ;ondition:expressiontype�spei�er�seq delarator = assignment�expressionseletion�statement:
if (expression ondition) statement
if (expression ondition) statement else statement
switch (expression ondition) statementiteration�statement:
while (expression ondition) statement
do statement while (expression ondition) ;
for (expressionopt onditionopt ; expressionopt onditionopt ;expressionopt) statement
for (delaration expressionopt onditionopt ; expressionopt) statementjump�statement:
goto identi�er ;
continue ;
break ;
return expressionopt ;

B.2.4. External De�nitionstranslation�unit:external�delarationtranslation�unit external�delarationexternal�delaration:funtion�de�nitiondelarationfuntion�de�nition:delaration�spei�ers delarator delaration�listopt ompound�statementdelaration�spei�ersopt delarator tor�initializeropt ompound�statement65

B. Lexial Grammardelaration�list:delarationdelaration�list delaration
B.2.5. Preproessing Diretivespreproessing��le:groupoptgroup:group�partgroup group�partgroup�part:if�setionontrol�linetext�line

non�diretiveif�setion:if�group elif�groupsopt else�groupopt endif�lineif�group:
if onstant�expression new�line groupopt

ifdef identi�er new�line groupopt

ifndef identi�er new�line groupoptelif�groups:elif�groupelif�groups elif�groupelif�group:
elif onstant�expression new�line groupoptelse�group:
else new�line groupoptendif�line:
endif new�line66

B.2. Phrase Struture Grammarontrol�line:
include pp�tokens new�line
define identi�er replaement�list new�line
define identi�er lparen identi�er�listopt) replaement�list new�line
define identi�er lparen ...) replaement�list new�line
define identi�er lparen identi�er�list , ...) replaement�listnew�line
undef identi�er new�line
line pp�tokens new�line
error pp�tokensopt new�line
pragma pp�tokensopt new�line
new�linetext�line:pp�tokensopt new�linenon�diretive:pp�tokens new�linelparen:a (harater not immediately preeded by white�spaereplaement�list:pp�tokensoptpp�tokens:preproessing�tokenpp�tokens preproessing�tokennew�line:the new�line haraterB.2.6. Classeslass�name:identi�erlass�spei�er:lass�head { member�spei�ationopt }lass�head:lass�key identi�eropt base�lauseoptlass�key nested�name�spei�er identi�er base�lauseopt 67

B. Lexial Grammarlass�key:
class
struct
unionmember�spei�ation:member�delaration member�spei�ationoptaess�spei�er : member�spei�ationoptmember�delaration:del�spei�er�seqopt member�delarator�listopt ;funtion�de�nition ; opt

:: opt nested�name�spei�er unquali�ed�id ;member�delarator�list:member�delaratormember�delarator�list , member�delaratormember�delarator:delaratordelarator pure�spei�erdelarator onstant�initializeridenti�eropt : onstant�expressionpure�spei�er:
= 0onstant�initializer:
= onstant�expression

B.2.7. Derived Classesbase�lause:
: base�spei�er�listbase�spei�er�list:base�spei�erbase�spei�er:
:: opt nested�name�spei�eropt lass�nameaess�spei�er :: opt nested�name�spei�eropt lass�name68

B.2. Phrase Struture Grammaraess�spei�er:
private
protected
publicB.2.8. Speial Member Funtionsonversion�funtion�id:
operator onversion�type�idonversion�type�id:delaration�spei�ers onversion�delaratoroptonversion�delarator:pointer onversion�delaratoropttor�initializer:
: mem�initializer�listmem�initializer�list:mem�initializermem�initializer , mem�initializer�listmem�initializer:mem�initializer�id (argument�expression�listopt)mem�initializer�id:
:: opt nested�name�spei�eropt lass�nameidenti�erB.2.9. Overloadingoperator�funtion�id:
operator operatoroperator: one of

new delete new[] delete[]
+ - * / % ˆ & | ˜
! = < > += -= * = /= %=
ˆ= &= |= « » »= «= == !=
<= >= && || ++ -- , -> * ->
() []

69

B. Lexial Grammar

70

Bibliography[1℄ Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers, Priniples, Teh-niques, and Tools. Addison�Wesley, Reading, Massahusetts, USA, 1986.[2℄ Andrew W. Appel. Modern Compiler Implentation in Java. Cambridge UniversityPress, Cambridge, UK, 2002.[3℄ J. W. Bakus, F. L. Bauer, J. Green, C. Katz, J. MCarthy, A. J. Perlis,H. Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein, A. van Wijngaarden,and M. Woodger. Report on the algorithmi language ALGOL 60. Communia-tions of the ACM, 3(5):299�314, 1960.[4℄ Volker Barthelmann. vb � portable ISO C ompiler, 2002. http://www.
compilers.de/vbcc.html .[5℄ Grady Booh. Objet Solutions: Managing the Objet�Oriented Projet. Addison�Wesley, Reading, Massahusetts, USA, 1996.[6℄ Benjamin M. Brosgol. TCOLAda and the "middle end"of the PQCC Ada om-piler. In SIGPLAN '80: Proeeding of the ACM-SIGPLAN symposium on Adaprogramming language, pages 101�112, New York, NY, USA, 1980. ACM Press.[7℄ Ana Isabel Cardoso, Rui Gustavo Crespo, and Peter Kokol. Assessing softwarestruture by entropy and information density. SIGSOFT Softw. Eng. Notes,29(2):2�2, 2004.[8℄ Carnegie Mellon Software Engineering Institute. Cylomati Complexity,2000. http://www.sei.cmu.edu/str/descriptions/cyclomatic_
body.html .[9℄ CodeSourery, Compaq, EDG, HP, IBM, Intel, Red Hat, and SGI. Itanium C++ABI (Revision: 1.86), 2005. http://www.codesourcery.com/cxx-abi/
abi.html .[10℄ Dinkumware, Ltd. Dinkum Compleat Libraries, 2006. http://www.
dinkumware.com/manuals/ .[11℄ Embedded C++ Tehnial Committee. Rationale for the Embedded C++ spe-i�ation, 1998. http://www.caravan.net/ec2plus/rationale.html .71

Bibliography[12℄ Embedded C++ Tehnial Committee. Annex A (informative): Grammar sum-mary, Version WP-AM-003, 1999. http://www.caravan.net/ec2plus/
gram_efd.html .[13℄ Embedded C++ Tehnial Committee. The Embedded C++ spei�ation,Version WP-AM-003, 1999. http://www.caravan.net/ec2plus/spec.
html .[14℄ Free Software Foundation. The GNU Compiler Colletion, 2006. http://gcc.
gnu.org/ .[15℄ Green Hills Software, In. Green Hills Optimizing C/C++/EC++ Com-pilers, 2004. http://www.ghs.com/download/datasheets/c++_ec+
+compiler.pdf .[16℄ IAR Systems. Extended Embedded C++, 2006. http://www.iar.com/ .[17℄ International Organization for Standardization. ISO/IEC 7185:1990: Program-ming language Pasal, 1990.[18℄ International Organization for Standardization. ISO/IEC 9899:1990: Program-ming languages � C, 1990.[19℄ International Organization for Standardization. ISO/IEC 10206:1991: Program-ming language Extended Pasal, 1991.[20℄ International Organization for Standardization. ISO/IEC 14882:1998: Program-ming languages � C++, 1998.[21℄ International Organization for Standardization. ISO/IEC 9899:1999: Program-ming languages � C, 1999.[22℄ B. W. Kernighan and D. M. Rithie. The C Programming Language. Prentie-Hall, Englewood Cli�s, New Jersey, USA, 1978.[23℄ Peter Kokol. Measuring formal spei�ation with α�metri. SIGSOFT Softw.Eng. Notes, 24(1):80�81, 1999.[24℄ Peter Kokol, Vili Podgorele, Henri Habrias, and Nassim Hadj Rabia. Theomplexity of formal spei�ations�assessments by α�metri. SIGPLAN Not.,34(6):84�88, 1999.[25℄ Thomas J. MCabe. A Complexity Measure. IEEE Transations on SoftwareEngineering, 2(4):308�320, 1976.[26℄ Thomas J. MCabe and Arthur H. Watson. Software Complexity. Crosstalk,Journal of Defense Software Engineering, 7(12):5�9, 1994.72

Bibliography[27℄ J. Power and B. Malloy. Metri-based analysis of ontext-free grammars, 2000.[28℄ A. Romanovsky, J. Xu, and B. Randell. Exeption Handling in Objet-OrientedReal�Time Distributed Systems. In Proeedings of the 1st IEEE InternationalSymposium on Objet�Oriented Real-time Distributed Computing (ISORC '98),pages 32�42, 1998.[29℄ Bjarne Stroustrup. The C++ Programming Language. Addison�Wesley, Reading,Massahusetts, 1997.[30℄ Sun Mirosystems, In. Mobile Information Devie Pro�le Spei�ation, Version2.0, 2002.[31℄ Sun Mirosystems, In. Conneted Limited Devie Con�guration (CLDC) Spe-i�ation, Version 1.1, 2003.[32℄ Sun Mirosystems, In. Java CardTM Spei�ation, Version 2.2.1, 2003.[33℄ Sun Mirosystems, In. Java Card Tehnology Overview, 2006. http://java.
sun.com/products/javacard/overview.html .[34℄ Sun Mirosystems, In. Java ME Tehnologies, 2006. http://java.sun.com/
javame/technologies/index.jsp .[35℄ TASKING, Altium Limited. Embedded C++ ompiler tehnology, 2006.
http://www.altium.com/tasking/resources/technologies/
compilers/ecpp/ .[36℄ Tehnial Committee X3J9. Objet�Oriented Extensions to Pasal, 1993. http:
//www.pascal-central.com/OOE-stds.html .[37℄ David R. Tribble. Inompatibilities Between ISO C and ISO C++, 2001. http:
//david.tribble.com/text/cdiffs.htm .[38℄ Jim Turley. The Two Perent Solution, 2002. http://www.embedded.com/
showArticle.jhtml?articleID=9900861 .[39℄ Wikipedia. Cfront, 2006. http://en.wikipedia.org/wiki/Cfront .[40℄ Wikipedia. Common Lisp, 2006. http://en.wikipedia.org/wiki/
Common_Lisp .[41℄ Wikipedia. Embedded system, 2006. http://en.wikipedia.org/wiki/
Embedded_systems .[42℄ Wikipedia. Lisp programming language, 2006. http://en.wikipedia.org/
wiki/Lisp_programming_language . 73

Bibliography[43℄ Wikipedia. Metaprogramming, 2006. http://en.wikipedia.org/wiki/
Meta_programming .[44℄ Wikipedia. MIDlet, 2006. http://en.wikipedia.org/wiki/MIDlet .[45℄ Wikipedia. Objet Pasal, 2006. http://en.wikipedia.org/wiki/
Object_Pascal .[46℄ Wikipedia. Referene (C++), 2006. http://en.wikipedia.org/wiki/
Reference_\%28C\%2B\%2B\%29 .[47℄ Wikipedia. Smart ard, 2006. http://en.wikipedia.org/wiki/Smart_
cards .[48℄ Reinhard Wilhelm and Dieter Maurer. Übersetzerbau. Springer�Verlag, Berlin,Germany, 1997.[49℄ World Semiondutor Trade Statistis. WSTS Semiondutor Market ForeastAutumn 2005, 2005. http://www.wsts.org .

74

